Review and comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns

Symbolic dynamic filtering (SDF) has been recently reported in literature as a pattern recognition tool for early detection of anomalies (i.e., deviations from the nominal behavior) in complex dynamical systems. This paper presents a review of SDF and its performance evaluation relative to other classes of pattern recognition tools, such as Bayesian Filters and Artificial Neural Networks, from the perspectives of: (i) anomaly detection capability, (ii) decision making for failure mitigation and (iii) computational efficiency. The evaluation is based on analysis of time series data generated from a nonlinear active electronic system.

[1]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[2]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[3]  Shalabh Gupta,et al.  Symbolic time series analysis of ultrasonic data for early detection of fatigue damage , 2007 .

[4]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  Matthew B Kennel,et al.  Estimating good discrete partitions from observed data: symbolic false nearest neighbors. , 2003, Physical review letters.

[7]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[8]  Jacquelien M. A. Scherpen,et al.  Fault detection method for nonlinear systems based on probabilistic neural network filtering , 2002, Int. J. Syst. Sci..

[9]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[10]  Benito R. Fernandez,et al.  A neural network based adaptive fault detection scheme , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[11]  A. Ray,et al.  Space partitioning via Hilbert transform for symbolic time series analysis , 2008 .

[12]  A. Ray,et al.  Symbolic identification and anomaly detection in complex dynamical systems , 2008, 2008 American Control Conference.

[13]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Shalabh Gupta,et al.  Real-time fatigue life estimation in mechanical structures , 2007 .

[16]  Asok Ray,et al.  Pattern identification using lattice spin systems: A thermodynamic formalism , 2007 .

[17]  Shalabh Gupta,et al.  Anomaly Detection in Thermal Pulse Combustors Using Symbolic Time Series Analysis , 2006 .

[18]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[19]  Joseph D. Bryngelson,et al.  Thermodynamics of chaotic systems: An introduction , 1994 .

[20]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[21]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[22]  Shalabh Gupta,et al.  Online fatigue damage monitoring by ultrasonic measurements : A symbolic dynamics approach , 2007 .

[23]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[24]  A. Khatkhate,et al.  Symbolic time-series analysis for anomaly detection in mechanical systems , 2006, IEEE/ASME Transactions on Mechatronics.

[25]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[26]  Gaëtan Kerschen,et al.  Non-linear generalization of principal component analysis: From a global to a local approach , 2002 .

[27]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[28]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[29]  Asok Ray,et al.  Symbolic dynamic analysis of complex systems for anomaly detection , 2004, Signal Process..

[30]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[31]  Asok Ray,et al.  Pattern identification in dynamical systems via symbolic time series analysis , 2007, Pattern Recognit..

[32]  Asok Ray,et al.  Symbolic time series analysis via wavelet-based partitioning , 2006, Signal Process..

[33]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[34]  Martin T. Hagan,et al.  Neural network design , 1995 .

[35]  Visakan Kadirkamanathan,et al.  Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[36]  Matthew B Kennel,et al.  Statistically relaxing to generating partitions for observed time-series data. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[38]  David G. Stork,et al.  Pattern Classification , 1973 .

[39]  A. Ray,et al.  Signed real measure of regular languages for discrete event supervisory control , 2005 .

[40]  Kok Kiong Tan,et al.  Fault Detection and Diagnosis Using Neural Network Design , 2006, ISNN.

[41]  Thomas I. Strasser,et al.  Artificial neural networks for fault detection in large-scale data acquisition systems , 2004, Eng. Appl. Artif. Intell..

[42]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[43]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[44]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[45]  S. Mallat A wavelet tour of signal processing , 1998 .

[46]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .