Direct 2-D Reconstructions of Conductivity and Permittivity From EIT Data on a Human Chest

A novel direct D-bar reconstruction algorithm is presented for reconstructing a complex conductivity distribution from 2-D EIT data. The method is applied to simulated data and archival human chest data. Permittivity reconstructions with the aforementioned method and conductivity reconstructions with the previously existing nonlinear D-bar method for real-valued conductivities depicting ventilation and perfusion in the human chest are presented. This constitutes the first fully nonlinear D-bar reconstructions of human chest data and the first D-bar permittivity reconstructions of experimental data. The results of the human chest data reconstructions are compared on a circular domain versus a chest-shaped domain.

[1]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[2]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[3]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[4]  Jennifer L. Mueller,et al.  Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT , 2009, IEEE Transactions on Medical Imaging.

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[7]  J L Mueller,et al.  2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. , 2010, Physiological measurement.

[8]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[9]  G.J. Saulnier,et al.  A real-time electrical impedance tomograph , 1995, IEEE Transactions on Biomedical Engineering.

[10]  Raul Gonzalez Lima,et al.  Electrical impedance tomography using the extended Kalman filter , 2004, IEEE Transactions on Biomedical Engineering.

[11]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[12]  S J Hamilton,et al.  A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D , 2012, Inverse problems.

[13]  L. D. Faddeev Increasing Solutions of the Schroedinger Equation , 1966 .

[14]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[15]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[16]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[17]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[18]  David S. Holder Electrical impedance tomography , 2005 .

[19]  Jennifer L. Mueller,et al.  Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D , 2013, IEEE Transactions on Medical Imaging.

[20]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[21]  Jutta Bikowski,et al.  2D EIT reconstructions using Calderon's method , 2008 .

[22]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[23]  J C Newell,et al.  Reconstructions of conductive and insulating targets using the D-bar method on an elliptical domain. , 2007, Physiological measurement.

[24]  Sarah J. Hamilton,et al.  A direct d-bar reconstruction algorithm for complex admittivities in w2,infin(omega) for the 2-d eit problem , 2012 .

[25]  Jennifer L. Mueller,et al.  Properties of the reconstruction algorithm and associated scattering transform for admittivities in the plane , 2009 .

[26]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[27]  David Isaacson,et al.  Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography , 2004, IEEE Transactions on Medical Imaging.

[28]  Harki Tanaka,et al.  Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. , 2004, American journal of respiratory and critical care medicine.

[29]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .

[30]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[31]  M. Cheney,et al.  Detection and imaging of electric conductivity and permittivity at low frequency , 1991, IEEE Transactions on Biomedical Engineering.