Sulfurized Colloidal Quantum Dot/Tungsten Disulfide Multi‐Dimensional Heterojunction for an Efficient Self‐Powered Visible‐to‐SWIR Photodetector

[1]  Lixin Chen,et al.  Carbon Quantum Dot-Passivated Perovskite/Carbon Electrodes for Stable Solar Cells , 2021, ACS Applied Nano Materials.

[2]  Jae Hyun Kim,et al.  Large‐Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Light‐Modulated Bidirectional Synaptic Circuits , 2021, Advanced materials.

[3]  F. P. García de Arquer,et al.  Facet‐Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors , 2021, Advanced materials.

[4]  Jihyun Kim,et al.  Highly selective ozone-treated β-Ga2O3 solar-blind deep-UV photodetectors , 2020, Applied Physics Letters.

[5]  S. Koester,et al.  Bandgap engineering of two-dimensional semiconductor materials , 2020, npj 2D Materials and Applications.

[6]  Andrew H. Proppe,et al.  Micron Thick Colloidal Quantum Dot Solids. , 2020, Nano letters.

[7]  Onur Özdemir,et al.  High Sensitivity Hybrid PbS CQD-TMDC Photodetectors up to 2 μm , 2020, ACS Photonics.

[8]  J. Dempsey,et al.  Mapping the Topology of PbS Nanocrystals through Displacement Isotherms of Surface-Bound Metal Oleate Complexes , 2020 .

[9]  O. Voznyy,et al.  Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. , 2019, ACS nano.

[10]  Shengyi Yang,et al.  Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots , 2019, Chinese Physics B.

[11]  Matthew M. Ackerman,et al.  Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. , 2018, ACS nano.

[12]  Daihua Zhang,et al.  Two-Dimensional High-Quality Monolayered Triangular WS2 Flakes for Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[13]  J. Choi,et al.  A Colloidal‐Quantum‐Dot‐Based Self‐Charging System via the Near‐Infrared Band , 2018, Advanced materials.

[14]  Liang Li,et al.  Self-Powered Nanoscale Photodetectors. , 2017, Small.

[15]  M. Döbeli,et al.  Stoichiometric control of the density of states in PbS colloidal quantum dot solids , 2017, Science Advances.

[16]  Rui Dong,et al.  Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems , 2017, Journal of vacuum science and technology. B, Nanotechnology & microelectronics : materials, processing, measurement, & phenomena : JVST B.

[17]  L. Cademartiri,et al.  Sulfur in oleylamine as a powerful and versatile etchant for oxide, sulfide, and metal colloidal nanoparticles , 2017 .

[18]  Ahmad R. Kirmani,et al.  Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics , 2016 .

[19]  Z. Tang,et al.  High Hole Mobility in Long‐Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films , 2016 .

[20]  A. Pal,et al.  Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals. , 2015, ACS applied materials & interfaces.

[21]  Jun Wang,et al.  Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets , 2015, Scientific Reports.

[22]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[23]  Y. Ling,et al.  High performance field-effect transistor based on multilayer tungsten disulfide. , 2014, ACS nano.

[24]  D. Milliron Quantum dot solar cells: The surface plays a core role , 2014 .

[25]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[26]  Moungi G Bawendi,et al.  Energy level modification in lead sulfide quantum dot thin films through ligand exchange. , 2014, ACS nano.

[27]  K. Char,et al.  One-pot synthesis of PbS NP/sulfur-oleylamine copolymer nanocomposites via the copolymerization of elemental sulfur with oleylamine , 2014 .

[28]  M. Loi,et al.  Reducing charge trapping in PbS colloidal quantum dot solids , 2014 .

[29]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[30]  Cherie R. Kagan,et al.  Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. , 2014, Nano letters.

[31]  Han Hu,et al.  Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. , 2013, ACS applied materials & interfaces.

[32]  Donggeon Han,et al.  Random and V-groove texturing for efficient light trapping in organic photovoltaic cells , 2013 .

[33]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[34]  Yong‐Hyun Kim,et al.  Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. , 2013, Journal of the American Chemical Society.

[35]  Sung-Hoon Hong,et al.  Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. , 2013, ACS nano.

[36]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[37]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[38]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[39]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[40]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[41]  T. Ungár Microstructural parameters from X-ray diffraction peak broadening , 2004 .

[42]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[43]  Yijian Shi,et al.  Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency , 2000 .

[44]  Kaiyou Wang,et al.  High‐Performance, Self‐Driven Photodetector Based on Graphene Sandwiched GaSe/WS2 Heterojunction , 2018 .

[45]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.