Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

[1]  Gniewomir Sarbicki,et al.  Quantum trajectories for a system interacting with environment in a single-photon state: Counting and diffusive processes , 2017, 1706.07967.

[2]  John Edward Gough,et al.  Stochastic Schrödinger Equations as Limit of Discrete Filtering , 2004, Open Syst. Inf. Dyn..

[3]  L. Di'osi,et al.  Continuous quantum measurement and itô formalism , 1988, 1812.11591.

[4]  Anita Magdalena Dabrowska,et al.  Quantum trajectories for environment in superposition of coherent states , 2017, Quantum Inf. Process..

[5]  Jun Ye,et al.  Real-time cavity QED with single atoms , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[6]  Alexander C. R. Belton Approximation via toy Fock space - the vacuum-adapted viewpoint , 2007 .

[7]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[8]  M. S. Zubairy,et al.  Quantum optics: Quantum theory of the laser – density operator approach , 1997 .

[9]  Claus Köstler,et al.  Couplings to classical and non-classical squeezed white noise as stationary Markov processes , 2002 .

[10]  Gernot Schaller,et al.  Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions , 2016, 1610.01829.

[11]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[12]  Zurek,et al.  Reduction of a wave packet in quantum Brownian motion. , 1989, Physical review. D, Particles and fields.

[13]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[14]  Neil P. Oxtoby,et al.  Model for monitoring of a charge qubit using a radio-frequency quantum point contact including experimental imperfections , 2007, 0706.3527.

[15]  Todd A. Brun,et al.  Method for quantum-jump continuous-time quantum error correction , 2015, 1510.00121.

[16]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[17]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[18]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[19]  Jelena Vučković,et al.  Scattering of Coherent Pulses from Quantum-Optical Systems , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[20]  M. B. Mensky,et al.  QUANTUM RESTRICTIONS FOR CONTINUOUS OBSERVATION OF AN OSCILLATOR , 1979 .

[21]  Klaus Molmer,et al.  Estimation of atomic interaction parameters by photon counting , 2014, 1403.1192.

[22]  R. F. Werner,et al.  On quantum error-correction by classical feedback in discrete time , 2004 .

[23]  J. Gough Quantum white noises and the master equation for Gaussian reference states , 2003 .

[24]  Pavel Lougovski,et al.  Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. , 2007, Physical review letters.

[25]  Lloyd Christopher L. Hollenberg,et al.  Surface code continuous quantum error correction using feedback , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[26]  H. M. Wiseman,et al.  State and dynamical parameter estimation for open quantum systems , 2001 .

[27]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[28]  A. Korotkov,et al.  Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback , 2004, cond-mat/0411617.

[29]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[30]  Hideo Mabuchi,et al.  Continuous quantum error correction as classical hybrid control , 2009 .

[31]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[32]  Kurt Jacobs,et al.  Quantum error correction for continuously detected errors with any number of error channels per qubit , 2004 .

[33]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[34]  Stevenson,et al.  The sense in which a "weak measurement" of a spin-(1/2 particle's spin component yields a value 100. , 1989, Physical review. D, Particles and fields.

[35]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[36]  Alberto Barchielli,et al.  A model for the macroscopic description and continual observations in quantum mechanics , 1982 .

[37]  Hendra Ishwara Nurdin,et al.  Quantum master equation and filter for systems driven by fields in a single photon state , 2011, IEEE Conference on Decision and Control and European Control Conference.

[38]  Robert L. Cook,et al.  Single-shot quantum state estimation via a continuous measurement in the strong backaction regime , 2014 .

[39]  P. A. Meyer A finite approximation to boson Fock space , 1986 .

[40]  Todd A. Brun,et al.  Decomposing generalized measurements into continuous stochastic processes , 2007 .

[41]  K. Mølmer,et al.  Bayesian parameter inference from continuously monitored quantum systems , 2012, 1212.5700.

[42]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[43]  Stéphane Attal,et al.  Approximating the Fock space with the toy Fock space , 2003 .

[44]  Lajos Diósi,et al.  Stochastic pure state representation for open quantum systems , 1986, 1609.09636.

[45]  N. Gisin,et al.  Wave-function approach to dissipative processes: are there quantum jumps? , 1992 .

[46]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[47]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[48]  Gardiner,et al.  Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  G. J. Milburn Quantum Control Based on Measurement , 2014 .

[50]  Neil P. Oxtoby,et al.  Quantum trajectories for the realistic measurement of a solid-state charge qubit , 2005 .

[51]  Bradley A. Chase,et al.  Single-shot parameter estimation via continuous quantum measurement , 2008, 0811.0601.

[52]  Hideo Mabuchi Dynamical identification of open quantum systems , 1996 .

[53]  Howard Mark Wiseman Quantum trajectories and feedback , 1994 .

[54]  Ramon van Handel,et al.  Optimal error tracking via quantum coding and continuous syndrome measurement , 2005 .

[55]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[56]  Jordan M Horowitz,et al.  Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  A. Korotkov Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.

[58]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[59]  G. W. Snedecor Statistical Methods , 1964 .

[60]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[61]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[62]  M. D. Srinivas,et al.  Photon Counting Probabilities in Quantum Optics , 1981 .

[63]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[64]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[65]  Ion Nechita,et al.  QUANTUM TRAJECTORIES IN RANDOM ENVIRONMENT: THE STATISTICAL MODEL FOR A HEAT BATH , 2009, 0908.2754.

[66]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[67]  C. Macklin,et al.  Observing single quantum trajectories of a superconducting quantum bit , 2013, Nature.

[68]  V Giovannetti,et al.  Master equations for correlated quantum channels. , 2011, Physical review letters.

[69]  Francesco Ciccarello,et al.  Collision models in quantum optics , 2017, 1712.04994.

[70]  V. Buzek,et al.  Simulation of indivisible qubit channels in collision models , 2012, 1202.6315.

[71]  M. B. Menskii,et al.  Continuous quantum measurements and path integrals , 1993 .

[72]  Marlan O. Scully,et al.  Quantum theory of an optical maser. , 1966 .

[73]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[74]  Klaus Molmer,et al.  Bayesian parameter estimation by continuous homodyne detection , 2016, 1605.00902.

[75]  Todd A. Brun,et al.  Continuous decomposition of quantum measurements via Hamiltonian feedback , 2015 .

[76]  Caves Quantum mechanics of measurements distributed in time. A path-integral formulation. , 1986, Physical review. D, Particles and fields.

[77]  Ion Nechita,et al.  Discrete Approximation of the Free Fock Space , 2008, 0810.4070.

[78]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[79]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[80]  H. Haus,et al.  QUANTUM NOISE IN LINEAR AMPLIFIERS , 1962 .

[81]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[82]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[83]  Ben Q. Baragiola,et al.  Quantum trajectories for propagating Fock states , 2017, 1704.00101.

[84]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[85]  Alexandre Blais,et al.  Nonlinear dispersive regime of cavity QED: The dressed dephasing model , 2008, 0803.0311.

[86]  Walls,et al.  Quantum jumps in atomic systems. , 1988, Physical review. A, General physics.

[87]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[88]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[89]  Stéphane Attal,et al.  Stochastic Master Equations in Thermal Environment , 2010, Open Syst. Inf. Dyn..

[90]  Milburn,et al.  Quantum-limited measurements with the atomic force microscope. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[91]  Andrew J. Landahl,et al.  Efficient feedback controllers for continuous-time quantum error correction , 2007 .

[92]  V. P. Belavkin,et al.  Quantum Filtering of Markov Signals with White Quantum Noise , 2005, quant-ph/0512091.

[93]  Yan Pautrat,et al.  From (n+1)-level atom chains to n-dimensional noises , 2005 .

[94]  Wei Cui,et al.  On the calculation of Fisher information for quantum parameter estimation based on the stochastic master equation , 2017, ArXiv.

[95]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[96]  Caves Quantum mechanics of measurements distributed in time. II. Connections among formulations. , 1987, Physical review. D, Particles and fields.

[97]  JOHN GOUGH Holevo-Ordering and the Continuous-Time Limit for Open Floquet Dynamics , 2004 .

[98]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states , 2012 .

[99]  G. Milburn,et al.  Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement , 2001, cond-mat/0103005.

[100]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[101]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[102]  H. Carmichael An open systems approach to quantum optics , 1993 .

[103]  Todd A. Brun,et al.  Continuous decomposition of quantum measurements via qubit probe feedback , 2014 .

[104]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.