Ab initio calculations of the B1-B2 phase transition in MgO

[1]  G. Zerah,et al.  Melting curve of aluminum up to 300 GPa obtained through ab initio molecular dynamics simulations , 2009 .

[2]  First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. , 2013, Physical review letters.

[3]  Y. Kawazoe,et al.  Ab initio studies of phonons in MgO by the direct method including LO mode , 2000 .

[4]  François Bottin,et al.  Phonon spectra of plutonium at high temperatures , 2017 .

[5]  M. Desjarlais,et al.  Shock Response and Phase Transitions of MgO at Planetary Impact Conditions. , 2015, Physical review letters.

[6]  A. Ravasio,et al.  Decaying shock studies of phase transitions in MgO‐SiO2 systems: Implications for the super‐Earths' interiors , 2016, 1604.01554.

[7]  Igor A. Abrikosov,et al.  Temperature dependent effective potential method for accurate free energy calculations of solids , 2013, 1303.1145.

[8]  Y. Tange,et al.  Correction to “Unified analyses for P‐V‐T equation of state of MgO: A solution for pressure‐scale problems in high P‐T experiments” , 2010 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  Y. Tange,et al.  Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments , 2008 .

[11]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[12]  B. Grabowski,et al.  Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation. , 2015, Physical review letters.

[13]  A. Dewaele,et al.  Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales , 2007 .

[14]  K. Hirose,et al.  Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications , 2008 .

[15]  D. J. Hooton Anharmonische Gitterschwingungen und die lineare Kette , 1955 .

[16]  M. Calandra,et al.  Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides , 2013, 1311.3083.

[17]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[18]  Börje Johansson,et al.  Properties of the fcc Lennard-Jones crystal model at the limit of superheating , 2007 .

[19]  J. Bouchet,et al.  High-temperature and high-pressure phase transitions in uranium , 2017 .

[20]  O. Anderson The Grüneisen ratio for the last 30 years , 2000 .

[21]  Jon H. Eggert,et al.  Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures , 2013 .

[22]  Gilbert W. Collins,et al.  Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature , 2012, Science.

[23]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[24]  R. Dovesi,et al.  On how differently the quasi-harmonic approximation works for two isostructural crystals: thermal properties of periclase and lime. , 2015, The Journal of chemical physics.

[25]  L. Stixrude,et al.  Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO3 perovskite , 2009 .

[26]  M. Odén,et al.  Temperature-dependent elastic properties of Ti1−xAlxN alloys , 2015 .

[27]  H. Mao,et al.  Quasi‐hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure‐volume‐temperature equation of state , 2001 .

[28]  T. Tsuchiya,et al.  The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[30]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[31]  Lance J. Nelson,et al.  Compressive sensing as a paradigm for building physics models , 2013 .

[32]  Brent Fultz,et al.  Vibrational thermodynamics of materials , 2010 .

[33]  L. Vočadlo,et al.  The elastic properties of hcp-Fe1 − xSix at Earth's inner-core conditions , 2016 .

[34]  R. Redmer,et al.  Ab initio simulations of MgO under extreme conditions , 2014 .

[35]  R. Wentzcovitch,et al.  Effective semiempirical ansatz for computing anharmonic free energies , 2009 .

[36]  G. E. Matthews,et al.  A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions , 2001 .

[37]  Blazej Grabowski,et al.  Ab initio up to the melting point: Anharmonicity and vacancies in aluminum , 2009 .

[38]  J. Bouchet,et al.  Thermal evolution of vibrational properties ofα-U , 2015 .

[39]  Raymond Jeanloz,et al.  Shock compression of stishovite and melting of silica at planetary interior conditions , 2015, Science.

[40]  A. Oganov,et al.  All-electron and pseudopotential study of MgO: Equation of state, anharmonicity, and stability , 2003 .

[41]  M. Mehl,et al.  Linearized augmented plane wave electronic structure calculations for MgO and CaO , 1988 .

[42]  B. Karki First-principles computation of mantle materials in crystalline and amorphous phases , 2015 .

[43]  Artem R. Oganov,et al.  Ab initio lattice dynamics and structural stability of MgO , 2003 .

[44]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[45]  P. Dorogokupets P–V–T equations of state of MgO and thermodynamics , 2010, PCM 2010.

[46]  Y. Gohda,et al.  Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  Igor A. Abrikosov,et al.  Temperature-dependent effective third-order interatomic force constants from first principles , 2013, 1308.5436.

[48]  F. Guyot,et al.  Physical properties of MgO at deep planetary conditions , 2018, Physical Review B.

[49]  S. Bonev,et al.  Demixing instability in dense molten MgSiO3 and the phase diagram of MgO. , 2013, Physical Review Letters.

[50]  D. Alfé Melting curve of MgO from first-principles simulations. , 2005, Physical review letters.

[51]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[52]  Burkhard Militzer,et al.  Rocky core solubility in Jupiter and giant exoplanets. , 2011, Physical review letters.

[53]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Marius Millot,et al.  Thermodynamic properties of MgSiO3 at super-Earth mantle conditions , 2018, Physical Review B.

[56]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[57]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[58]  F. D. Stacey High pressure equations of state and planetary interiors , 2005 .

[59]  L. Vočadlo,et al.  Strong Premelting Effect in the Elastic Properties of hcp-Fe Under Inner-Core Conditions , 2013, Science.

[60]  Xavier Gonze,et al.  Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .

[61]  L. V. Al’tshuler,et al.  Isotherms and Grüneisen functions for 25 metals , 1987 .

[62]  R. Martoňák,et al.  MgO phase diagram from first principles in a wide pressure-temperature range , 2010 .

[63]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[64]  W. Goddard,et al.  Phase diagram of MgO from density-functional theory and molecular-dynamics simulations , 1999 .

[65]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[66]  M. Torrent,et al.  Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations , 2008 .