Quantitative Trait Linkage Analysis Using Gaussian Copulas

Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally distributed data, we developed and implemented a modified VC method, which we call the “copula VC method,” that directly models the nonnormal distribution using Gaussian copulas. The copula VC method allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC method can easily incorporate covariates. We use computer simulations to show that the proposed method yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with a variety of nonnormal traits as compared with the standard VC and the regression-based methods.

[1]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[2]  D Y Lin,et al.  A powerful and robust method for mapping quantitative trait loci in general pedigrees. , 2005, American journal of human genetics.

[3]  Karl W Broman,et al.  Power and robustness of linkage tests for quantitative traits in general pedigrees , 2005, Genetic epidemiology.

[4]  Karl W Broman,et al.  Quantitative trait linkage analysis by generalized estimating equations: Unification of variance components and Haseman‐Elston regression , 2004, Genetic epidemiology.

[5]  C. Klaassen,et al.  Copulas in QTL Mapping , 2004, Behavior genetics.

[6]  Michael P Epstein,et al.  A tobit variance-component method for linkage analysis of censored trait data. , 2003, American journal of human genetics.

[7]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[8]  Shaun Purcell,et al.  Powerful regression-based quantitative-trait linkage analysis of general pedigrees. , 2002, American journal of human genetics.

[9]  J. Huang,et al.  A score-statistic approach for the mapping of quantitative-trait loci with sibships of arbitrary size. , 2002, American journal of human genetics.

[10]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[11]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[12]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[13]  Daniel F. Gudbjartsson,et al.  Allegro, a new computer program for multipoint linkage analysis , 2000, Nature genetics.

[14]  L. Almasy,et al.  Robust LOD scores for variance component‐based linkage analysis , 2000, Genetic epidemiology.

[15]  G. Abecasis,et al.  A general test of association for quantitative traits in nuclear families. , 2000, American journal of human genetics.

[16]  N. Schork,et al.  Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. , 1999, American journal of human genetics.

[17]  L. Tiret,et al.  A parametric copula model for analysis of familial binary data. , 1999, American journal of human genetics.

[18]  J. Blangero,et al.  Comparison of variance components and sibpair‐based approaches to quantitative trait linkage analysis in unselected samples , 1999, Genetic epidemiology.

[19]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[20]  C. Amos,et al.  Genetic linkage analysis using lognormal variance components , 1998, Annals of human genetics.

[21]  R. Nelsen An Introduction to Copulas , 1998 .

[22]  L. Almasy,et al.  Multipoint quantitative-trait linkage analysis in general pedigrees. , 1998, American journal of human genetics.

[23]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[24]  E. Boerwinkle,et al.  Assessing genetic linkage and association with robust components of variance approaches , 1996, Annals of human genetics.

[25]  C. Amos Robust variance-components approach for assessing genetic linkage in pedigrees. , 1994, American journal of human genetics.

[26]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[27]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[28]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[29]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[31]  R. Elston,et al.  The investigation of linkage between a quantitative trait and a marker locus , 1972, Behavior genetics.

[32]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .