Numerical integration of stochastic differential equations — ii

In a previous paper, a method was presented to integrate numerically nonlinear stochastic differential equations (SDEs) with additive, Gaussian, white noise. The method, a generalization of the Range Kutta algorithm, extrapolates from one point to the next applying functional evaluations at stochastically determined points. This paper extends (and at one point corrects) algorithms for the simple class of equations considered in the previous paper. In addition, the method is expanded to treat vector SDEs, equations with time-dependent functions, and SDEs higher than first order. The parameters for several explicit integration schemes are displayed.

[1]  E. Helfand,et al.  Brownian Dynamics Study of Polymer Conformational Transitions , 1979 .

[2]  E. Helfand,et al.  Brownian dynamics study of transitions in a polymer chain of bistable oscillators , 1978 .

[3]  Abraham Nitzan,et al.  Dynamics of gas–solid interactions: Calculations of energy transfer and sticking , 1977 .

[4]  P. Lee,et al.  Efficient Analysis of Molecular Dynamics Data , 1976 .

[5]  T. Yamada,et al.  Sur l'approximation des solutions d'équations différentielles stochastiques , 1976 .

[6]  A. H. Stroud,et al.  Numerical Quadrature and Solution of Ordinary Differential Equations: A Textbook for a Beginning Course in Numerical Analysis , 1974 .

[7]  D. Wright,et al.  The digital simulation of stochastic differential equations , 1974 .

[8]  N. J. Rao,et al.  Numerical Solution of Ito Integral Equations , 1974 .

[9]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[10]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[11]  John C. Butcher,et al.  On the integration processes of A. Huťa , 1963, Journal of the Australian Mathematical Society.

[12]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[13]  E. Helfand Numerical integration of stochastic differential equations , 1979, The Bell System Technical Journal.

[14]  Hazime Mori,et al.  A New Expansion of the Master Equation , 1974 .