NMR relaxation study of disorder in condensed matter  – low temperature studies in the mixed system  − BPI(1−x)BP x  – transition from classical to quantum rotation

1H NMR spin-lattice relaxation time (T1 ) studies have been carried out in the mixed system, betaine phosphite–betaine phosphate (BPI(1−x)BP x ), to study the effects of disorder. The T1 data in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, has been analysed following Lourens’ model, which shows a gradual transition from classical reorientations to quantum tunnelling motions. At lower temperatures, (when thermal motions become too slow) differences (due to disorder) in the local environments of the reorienting groups result in a distribution in the activation energy (Ea ) and the energy gap of the ground to the first excited torsional level (E01 ). Below 50 K, the system moves into the quantum tunneling regime and the magnetisation recovery shows biexponential behaviour which is another signature of disorder. These results are compared with those of the parent compounds BP and BPI.

[1]  J. Ramakrishna,et al.  NMR relaxation study of disorder in condensed matter: solid solutions of betaine phosphate and phosphite , 2006 .

[2]  J. Ramakrishna,et al.  1H NMR spin–lattice relaxation studies in Betaine phosphate (BP) – Transition from classical to quantum rotation , 2006 .

[3]  D. Johnston,et al.  Dynamics of magnetic defects in heavy fermion LiV2O4 from stretched exponential 7Li NMR relaxation. , 2005, Physical review letters.

[4]  J. Banys,et al.  Dielectric properties in the vicinity of the ferroelectric phase transition in a mixed crystal of deuterated BP0.01BPI0.99 , 2001 .

[5]  J. Banys,et al.  Glass behaviour in the solid solution of deuterated betaine phosphate0.15 betaine phosphite0.85 , 2000 .

[6]  R. Böhmer,et al.  Deuteron NMR investigations of glass and phase transitions in (KI)1-x(ND4I)x mixed crystals , 1998 .

[7]  R. Blinc,et al.  Low temperature properties of proton and deuteron glasses , 1997 .

[8]  F. Gervais,et al.  Study of lattice dynamics and phase transitions in betaine phosphate by comparison with betaine phosphite via infrared reflectivity spectroscopy , 1997 .

[9]  M. M. Costa,et al.  Detailed Structural X‐Ray Study of (Betaine Phosphate)1—x(Betaine Phosphite)x Compounds , 1997 .

[10]  Blinc,et al.  Quantum effects in the dynamics of proton glasses. , 1996, Physical review. B, Condensed matter.

[11]  J. Banys,et al.  LETTER TO THE EDITOR: Proton glass behaviour in a solid solution of ?-irradiated betaine phosphate0.15 betaine phosphite0.85 , 1996 .

[12]  Ries,et al.  Static freezing transition at a finite temperature in a quasi-one-dimensional deuteron glass. , 1996, Physical review letters.

[13]  A. Loidl,et al.  Order parameters and dipole relaxation in betaine proton glasses , 1996 .

[14]  H. Ebert,et al.  Investigations on dielectric and structural properties of ferroelectric betaine phosphite (BPI) , 1995 .

[15]  J. Kiat,et al.  X-Ray Study of the System BP1−xBPIx , 1995 .

[16]  Pinto Nj,et al.  Deuteron NMR study of dynamics and of coexistence of paraelectric and ferroelectric phases in Rb0.90(ND4)0.10D2AsO4. , 1993 .

[17]  Korner,et al.  Soft mode, "relaxor," and glassy-type dynamics in the solid solution Rb1-x(ND4)xD2PO4. , 1993, Physical review letters.

[18]  Orešič,et al.  Model of a quasi-one-dimensional spin glass. , 1993, Physical review. B, Condensed matter.

[19]  M. R. Chaves,et al.  Dielectric and pyroelectric behaviour in (BPI)x (BP)1−x , 1993 .

[20]  G. Schaack,et al.  Pressure-temperature phase diagrams of betaine-arsenate, -phosphate, and -phosphite , 1992 .

[21]  Mertz,et al.  Proton glass behavior and hopping conductivity in solid solutions of antiferroelectric betaine phosphate and ferroelectric betaine phosphite. , 1991, Physical review letters.

[22]  Schmidt,et al.  Coexistence of proton-glass and ferroelectric order in Rb1-x(NH4)xH2AsO4. , 1991, Physical review. B, Condensed matter.

[23]  M. R. Chaves,et al.  Nonlinear behaviour in Betaine Arsenate , 1990 .

[24]  M. R. Chaves,et al.  Critical behaviour in (BPI)x(BP)1−x , 1990 .

[25]  M. Taupitz,et al.  HETEROGENEOUS SPIN-LATTICE RELAXATION REVEALING THE ACTIVATION ENERGY DISTRIBUTION OF MOBILE GUESTS IN ORGANIC GLASSES , 1990 .

[26]  I. Cameron,et al.  Rotating-frame NMR relaxation in the dipolar spin glass Rb1-x(NH4)xH2AsO4 , 1990 .

[27]  Tadić,et al.  Local-polarization distribution in deuteron glasses. , 1989, Physical review letters.

[28]  M. R. Chaves,et al.  Pyroelectric effect and freezing out of domain structure in betaine arsenate , 1988 .

[29]  N. Nakamura NMR studies of critical phenomena in some hydrogen-bonded dielectrics , 1988 .

[30]  Umer,et al.  Nuclear magnetic resonance in random fields: Cluster formation and local dynamics of a deuteron glass. , 1986, Physical review letters.

[31]  Courtens Scaling dielectric data on Rb1-x(NH4)xH2PO4 structural glasses and their deuterated isomorphs. , 1986, Physical review. B, Condensed matter.

[32]  K. Binder,et al.  Dynamics of Ising spin glasses far below the lower critical dimension: The one-dimensional case and small clusters , 1985 .

[33]  R. Palmer,et al.  Models of hierarchically constrained dynamics for glassy relaxation , 1984 .

[34]  V. Schmidt,et al.  Proton-glass dielectric behavior of a Rb0.52(ND4)0.48D2PO4 crystal , 1984 .

[35]  S. Žumer,et al.  NMR relaxation study of the H-bonded glass Rb 1 − x ( N H 4 ) x H 2 P O 4 , 1984 .

[36]  E. C. Reynhardt,et al.  Proton spin-lattice relaxation from classical and tunneling motions of NH3 groups in Co(NH3)6Cl3 , 1984 .

[37]  E. Courtens Vogel-Fulcher scaling of the susceptibility in a mixed-crystal proton glass , 1984 .

[38]  A. Weiss,et al.  Molecular Motion of [(CH3)3NH]⊕ Ions in Solid Trimethylammonium Hexahalometallates(IV) as Studied by 1H NMR and 35Cl NQR , 1982 .

[39]  J. Lewis,et al.  The rate of thermally activated methyl group rotation in solids , 1982 .

[40]  M. Paley,et al.  The pressure dependence of methyl tunnelling motion , 1979 .

[41]  S. Clough The temperature dependence of rotational tunnelling frequencies in molecular solids , 1976 .

[42]  S. Emid,et al.  On spin—lattice relaxation of tunnelling methyl groups , 1975 .