T2′‐ and PASL‐based perfusion mapping at 3 Tesla: influence of oxygen‐ventilation on cerebral autoregulation

To use T2′‐mapping together with Pulsed Arterial Spin Labeling (PASL) providing quantitative information of deoxygenation level and cerebral blood flow (CBF) in the cerebral gray matter to obtain simultaneous information about the cerebral oxygen metabolism and the resulting cerebral vasoreactivity under normoxic and hyperoxic conditions.

[1]  J. Meyer,et al.  Cerebral vasomotor responsiveness during 100% oxygen inhalation in cerebral ischemia. , 1983, Archives of neurology.

[2]  B. Thomas,et al.  Susceptibility weighted imaging in cerebral hypoperfusion—can we predict increased oxygen extraction fraction? , 2010, Neuroradiology.

[3]  T. Mosher,et al.  Removal of local field gradient artifacts in T2*‐weighted images at high fields by gradient‐echo slice excitation profile imaging , 1998, Magnetic resonance in medicine.

[4]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Richard S. J. Frackowiak,et al.  Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. , 1990, Brain : a journal of neurology.

[6]  J. Meyer,et al.  Cerebral vasomotor responses during oxygen inhalation. Results in normal aging and dementia. , 1983, Archives of neurology.

[7]  H. Becker,et al.  Effect of different levels of hyperoxia on breathing in healthy subjects. , 1996, Journal of applied physiology.

[8]  J. Detre,et al.  Arterial spin labeling perfusion fMRI with very low task frequency , 2003, Magnetic resonance in medicine.

[9]  J Fiehler,et al.  Age-Dependent Normal Values of T2* and T2′ in Brain Parenchyma , 2008, American Journal of Neuroradiology.

[10]  D. Gutsaeva,et al.  Hyperoxic Vasoconstriction in the Brain Is Mediated by Inactivation of Nitric Oxide by Superoxide Anions , 2003, Neuroscience and Behavioral Physiology.

[11]  Ralf Deichmann,et al.  Quantitative T*2‐mapping based on multi‐slice multiple gradient echo flash imaging: Retrospective correction for subject motion effects , 2011, Magnetic resonance in medicine.

[12]  J C Gore,et al.  Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: Separation of blood volume and magnetic susceptibility effects , 1997, Magnetic resonance in medicine.

[13]  Robert R. Edelman,et al.  Noninvasive assessment of regional ventilation in the human lung using oxygen–enhanced magnetic resonance imaging , 1996, Nature Medicine.

[14]  A. Heyman,et al.  Cerebral circulation and metabolism in sickle cell and other chronic anemias, with observations on the effects of oxygen inhalation. , 1952, The Journal of clinical investigation.

[15]  Maximilian Reiser,et al.  Oxygen‐enhanced MRI of the brain , 2002, Magnetic resonance in medicine.

[16]  S. Kety,et al.  THE NITROUS OXIDE METHOD FOR THE QUANTITATIVE DETERMINATION OF CEREBRAL BLOOD FLOW IN MAN: THEORY, PROCEDURE AND NORMAL VALUES. , 1948, The Journal of clinical investigation.

[17]  F. Jensen Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. , 2004, Acta physiologica Scandinavica.

[18]  Richard Wise,et al.  A calibration method for quantitative BOLD fMRI based on hyperoxia , 2007, NeuroImage.

[19]  R A Margolin,et al.  Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. , 1983, Brain : a journal of neurology.

[20]  O Henriksen,et al.  Signal changes in gradient echo images of human brain induced by hypo‐ and hyperoxia , 1995, NMR in biomedicine.

[21]  J. Detre,et al.  Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  T. Floyd,et al.  Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. , 2003, Journal of applied physiology.

[23]  Peter Jezzard,et al.  Cerebral Perfusion Response to Hyperoxia , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  G. Zaharchuk,et al.  Noninvasive Imaging of Quantitative Cerebral Blood Flow Changes during 100% Oxygen Inhalation Using Arterial Spin-Labeling MR Imaging , 2008, American Journal of Neuroradiology.

[25]  A. Jackson,et al.  The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography. , 2000, European journal of anaesthesiology.

[26]  V M Haughton,et al.  T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. , 1991, Radiology.

[27]  J. Whittembury,et al.  Cerebral blood-flow in polycythaemia. , 1977, Lancet.

[28]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[29]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[30]  H. Köstler,et al.  Sauerstoffverstärkte funktionelle MR-Lungenbildgebung , 2009, Der Radiologe.

[31]  R. Ordidge,et al.  Assessment of relative brain iron concentrations using T2‐weighted and T2*‐weighted MRI at 3 Tesla , 1994, Magnetic resonance in medicine.

[32]  J. Olesen,et al.  Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man. , 1973, Journal of applied physiology.

[33]  Alfried Kohlschütter,et al.  Normal Brain Maturation Characterized With Age-Related T2 Relaxation Times: An Attempt to Develop a Quantitative Imaging Measure for Clinical Use , 2004, Investigative radiology.

[34]  P. Bandettini,et al.  QUIPSS II with thin‐slice TI1 periodic saturation: A method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling , 1999, Magnetic resonance in medicine.

[35]  Christian Bohr,et al.  Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt1 , 1904 .

[36]  M. Poulin,et al.  Fast and slow components of cerebral blood flow response to step decreases in end-tidal PCO2 in humans. , 1998, Journal of applied physiology.

[37]  J. Wade,et al.  Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. , 1985, Brain : a journal of neurology.

[38]  G. Radda,et al.  Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. , 1982, Biochimica et biophysica acta.

[39]  Ralf Deichmann,et al.  Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease , 2010, NeuroImage.

[40]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Russell,et al.  CEREBRAL BLOOD-FLOW IN POLYCYTHÆMIA , 1977, The Lancet.

[42]  D K Menon,et al.  Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. , 2003, British journal of anaesthesia.

[43]  M A Fernández-Seara,et al.  Postprocessing technique to correct for background gradients in image‐based R*2 measurements , 2000, Magnetic resonance in medicine.

[44]  Christine Preibisch,et al.  Rapid single‐scan T  2* ‐mapping using exponential excitation pulses and image‐based correction for linear background gradients , 2009, Magnetic resonance in medicine.

[45]  A. Haase,et al.  Rapid NMR imaging of dynamic processes using the FLASII technique , 1986, Magnetic resonance in medicine.

[46]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[47]  P M Jakob,et al.  Rapid quantitative lung 1H T1 mapping , 2001, Journal of magnetic resonance imaging : JMRI.