The effect of vibration cutting on minimum cutting thickness

Abstract In the ultra-precision diamond cutting process, the rake angle of the tool becomes negative because the edge radius of a tool is considerably larger compared to the sub-micrometer depth of the cut. The effects of plowing due to the large negative rake angle result in an unstable cutting process without continuous chip. For this reason, it is important to determine minimum cutting thickness in order to enable greater machining accuracy to be obtained by fine and stable machining. It was previously reported that the critical depth of cut with a continuous chip was determined by the tool sharpness and the friction coefficient between a workpiece and a tool [S.M. Son, et al., Effects of the friction coefficient on the minimum cutting thickness in micro cutting, International Journal of Machine Tools and Manufacture 45 (2005) 529–535]. For the same edge radius of a tool, the higher the friction coefficient of the tool–workpiece, the thinner the minimum cutting thickness becomes. Therefore, it is believed that increasing the friction coefficient by a physical method would be effective to achieve thinner stable cutting. In this study, the possibility of reducing the minimum cutting thickness was investigated through changing the friction coefficient of a tool–workpiece. The vibration cutting method is applied to increase the friction coefficient. Experimental results show that the cutting technology is efficient for increasing the friction coefficient and decreasing the minimum cutting thickness. The minimum cutting thickness was reduced by about 0.02–0.04 μm depending on materials and vibration conditions.

[1]  B. Bhushan Handbook of micro/nano tribology , 1995 .

[2]  Abhijit Chandra,et al.  Characteristics of single-grit rotating scratch with a conical tool on pure titanium , 2001 .

[3]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[4]  Shoichi Shimada,et al.  Non-Destructive Strength Evaluation of Diamond for Ultra-Precision Cutting Tool , 1985 .

[5]  T. Stolarski Tribology in Machine Design , 1990 .

[6]  G. K. Lal,et al.  Transition from ploughing to cutting during machining with blunt tools , 1977 .

[7]  Shuliang Dong,et al.  Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining , 1996 .

[8]  Eiji Shamoto,et al.  Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration , 1991 .

[9]  Shouxin Li,et al.  Some developments for single-pass pendulum scratching , 1996 .

[10]  H. Takeyama,et al.  Machinability of Glassfiber Reinforced Plastics and Application of Ultrasonic Machining , 1988 .

[11]  Don A. Lucca,et al.  Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining , 1993 .

[12]  Kenji Inoue,et al.  Ultraprecision ductile cutting of glass by applying ultrasonic vibration , 1992 .

[13]  Junghwan Ahn,et al.  Effects of the friction coefficient on the minimum cutting thickness in micro cutting , 2005 .

[14]  F. C. Lea Hardness of metals , 1936 .

[15]  Ghatu Subhash,et al.  Investigation of the overall friction coefficient in single-pass scratch test , 2002 .

[16]  A. Delfino,et al.  Single-pass pendulum scratching of poly(styrene) and poly(methylmethacrylate) , 1999 .

[17]  Brian J. Briscoe,et al.  Scratching maps for polymers , 1996 .

[18]  Ming Zhou,et al.  Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration , 2002 .