Learning hidden influences in large-scale dynamical social networks: A data-driven sparsity-based approach

The processes of information diffusion across social networks (for example, the spread of opinions and the formation of beliefs) are attracting substantial interest in disciplines ranging from behavioral sciences to mathematics and engineering (see "Summary"). Since the opinions and behaviors of each individual are infl uenced by interactions with others, understanding the structure of interpersonal infl uences is a key ingredient to predict, analyze, and, possibly, control information and decisions [1]. With the rapid proliferation of social media platforms that provide instant messaging, blogging, and other networking services (see "Online Social Networks") people can easily share news, opinions, and preferences. Information can reach a broad audience much faster than before, and opinion mining and sentiment analysis are becoming key challenges in modern society [2]. The first anecdotal evidence of this fact is probably the use that the Obama campaign made of social networks during the 2008 U.S. presidential election [3]. More recently, several news outlets stated that Facebook users played a major role in spreading fake news that might have infl uenced the outcome of the 2016 U.S. presidential election [4]. This can be explained by the phenomena of homophily and biased assimilation [5]-[7] in social networks, which correspond to the tendency of people to follow the behaviors of their friends and establish relationships with like-minded individuals.

[1]  Stanley Wasserman,et al.  Mathematical Models for Social Psychology. , 1979 .

[2]  Claire J. Tomlin,et al.  Identification of nonlinear sparse networks using sparse Bayesian learning , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[3]  Karl Henrik Johansson,et al.  Structural Balance and Opinion Separation in Trust–Mistrust Social Networks , 2016, IEEE Transactions on Control of Network Systems.

[4]  Diemo Urbig,et al.  Attitude Dynamics With Limited Verbalisation Capabilities , 2003, J. Artif. Soc. Soc. Simul..

[5]  Joao Antonio Pereira,et al.  Linked: The new science of networks , 2002 .

[6]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.

[7]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[8]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[9]  Paolo Frasca,et al.  Consensus and disagreement: the role of quantized behaviours in opinion dynamics , 2016, SIAM J. Control. Optim..

[10]  Marco Conti,et al.  Ego network structure in online social networks and its impact on information diffusion , 2016, Comput. Commun..

[11]  Samuel Martin,et al.  Open multi-agent systems: Gossiping with random arrivals and departures , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[12]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[13]  Károly Takács,et al.  Discrepancy and Disliking Do Not Induce Negative Opinion Shifts , 2016, PloS one.

[14]  Alfred O. Hero,et al.  Learning sparse graphs under smoothness prior , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Chiara Ravazzi,et al.  Learning Influence Structure in Sparse Social Networks , 2018, IEEE Transactions on Control of Network Systems.

[16]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[17]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[18]  Chiara Ravazzi,et al.  Ergodic Randomized Algorithms and Dynamics Over Networks , 2013, IEEE Transactions on Control of Network Systems.

[19]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs: Frequency Analysis , 2013, IEEE Transactions on Signal Processing.

[20]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[21]  Claudio Altafini,et al.  Dynamics over Signed Networks , 2017, SIAM Rev..

[22]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[23]  Frank A. Farris The Gini Index and Measures of Inequality , 2010, Am. Math. Mon..

[24]  Noah E. Friedkin,et al.  A Formal Theory of Reflected Appraisals in the Evolution of Power , 2011 .

[25]  Andrei Z. Broder,et al.  Efficient PageRank approximation via graph aggregation , 2004, WWW Alt. '04.

[26]  Hernán A. Makse,et al.  CUNY Academic Works , 2022 .

[27]  Michael Reinhard Rational Consensus In Science And Society , 2016 .

[28]  J. March Measurement Concepts in the Theory of Influence , 1957, The Journal of Politics.

[29]  B. A. Farbey,et al.  Structural Models: An Introduction to the Theory of Directed Graphs , 1966 .

[30]  Tamer Basar,et al.  Exponential Convergence of the Discrete- and Continuous-Time Altafini Models , 2017, IEEE Transactions on Automatic Control.

[31]  Asuman E. Ozdaglar,et al.  Opinion Fluctuations and Disagreement in Social Networks , 2010, Math. Oper. Res..

[32]  Paolo Frasca,et al.  Proportional Dynamic Consensus in Open Multi-Agent Systems , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[33]  Bertram Gawronski,et al.  Cognitive consistency: a fundamental principle in social cognition , 2012 .

[34]  Chiara Ravazzi,et al.  Distributed randomized algorithms for opinion formation, centrality computation and power systems estimation: A tutorial overview , 2015, Eur. J. Control.

[35]  Mario Sznaier,et al.  A Randomized Algorithm for Parsimonious Model Identification , 2018, IEEE Transactions on Automatic Control.

[36]  Marco Conti,et al.  Twitter and the Press: an Ego-Centred Analysis , 2018, WWW.

[37]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[38]  M. Cruz-cunha,et al.  Handbook of Research on Mobility and Computing : Evolving Technologies and Ubiquitous Impacts , 2011 .

[39]  Brian D. O. Anderson,et al.  Reaching a Consensus in a Dynamically Changing Environment: Convergence Rates, Measurement Delays, and Asynchronous Events , 2008, SIAM J. Control. Optim..

[40]  Yun Liu,et al.  Analysis and application of opinion model with multiple topic interactions. , 2017, Chaos.

[41]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[42]  Stefano Battiston,et al.  A multiplex financial network approach to policy evaluation: the case of euro area Quantitative Easing , 2018, Applied Network Science.

[43]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[44]  Anna Monreale,et al.  Multidimensional networks: foundations of structural analysis , 2013, World Wide Web.

[45]  E Kaiser,et al.  Sparse identification of nonlinear dynamics for model predictive control in the low-data limit , 2017, Proceedings of the Royal Society A.

[46]  Gang Kou,et al.  A survey on the fusion process in opinion dynamics , 2018, Inf. Fusion.

[47]  Jiawei Han,et al.  Learning influence from heterogeneous social networks , 2012, Data Mining and Knowledge Discovery.

[48]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[49]  Marco Conti,et al.  Analysis of Ego Network Structure in Online Social Networks , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[50]  Sergio Barbarossa,et al.  Signals on Graphs: Uncertainty Principle and Sampling , 2015, IEEE Transactions on Signal Processing.

[51]  Noah E. Friedkin,et al.  Social influence and opinions , 1990 .

[52]  Jan Lorenz,et al.  Universality in movie rating distributions , 2008, 0806.2305.

[53]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[54]  Emden R. Gansner,et al.  Graphviz - Open Source Graph Drawing Tools , 2001, GD.

[55]  Matthias Scholz,et al.  Node similarity as a basic principle behind connectivity in complex networks , 2010, J. Data Min. Digit. Humanit..

[56]  Hossein Noorazar Recent advances in opinion propagation dynamics: a 2020 survey , 2020, ArXiv.

[57]  J. French A formal theory of social power. , 1956, Psychology Review.

[58]  Francesco Bullo,et al.  Eulerian Opinion Dynamics with Bounded Confidence and Exogenous Inputs , 2012, SIAM J. Appl. Dyn. Syst..

[59]  Roberto Tempo,et al.  A new model of opinion dynamics for social actors with multiple interdependent attitudes and prejudices , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[60]  Pascal Frossard,et al.  Learning of structured graph dictionaries , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[61]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[62]  Jacob L. Moreno,et al.  Statistics of Social Configurations , 1938 .

[63]  Francesco Bullo,et al.  Mathematical Structures in Group Decision-Making on Resource Allocation Distributions , 2019, Scientific Reports.

[64]  Noah E. Friedkin,et al.  Theoretical Foundations for Centrality Measures , 1991, American Journal of Sociology.

[65]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[66]  Chiara Ravazzi,et al.  Gossips and Prejudices: Ergodic Randomized Dynamics in Social Networks , 2013, ArXiv.

[67]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[68]  P. Metaxas,et al.  Social Media and the Elections , 2012, Science.

[69]  Angelo Coluccia Regularized Covariance Matrix Estimation via Empirical Bayes , 2015, IEEE Signal Processing Letters.

[70]  F. R. Gantmakher The Theory of Matrices , 1984 .

[71]  P. Converse The Nature of Belief Systems in Mass Publics , 2004 .

[72]  Pascal Frossard,et al.  Learning Graphs From Data: A Signal Representation Perspective , 2018, IEEE Signal Processing Magazine.

[73]  D. Sade,et al.  Sociometrics of Macaca Mulatta III: n-path centrality in grooming networks , 1989 .

[74]  Edoardo M. Airoldi,et al.  Getting Started in Probabilistic Graphical Models , 2007, PLoS Comput. Biol..

[75]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[76]  Anna Scaglione,et al.  Active Sensing of Social Networks , 2016, IEEE Transactions on Signal and Information Processing over Networks.

[77]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[78]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[79]  Ming Cao,et al.  Clustering in diffusively coupled networks , 2011, Autom..

[80]  Francesco Bullo,et al.  A Theory of the Evolution of Social Power: Natural Trajectories of Interpersonal Influence Systems along Issue Sequences , 2016 .

[81]  Yonina C. Eldar,et al.  System identification from partial samples: Non-asymptotic analysis , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[82]  C. A. Murthy,et al.  Sparsity Measure of a Network Graph: Gini Index , 2016, Inf. Sci..

[83]  Mauro Onori,et al.  Evolvable Production Systems: A Coalition-Based Production Approach , 2011 .

[84]  Guillermo A. Cecchi,et al.  Practical Applications of Sparse Modeling , 2014 .

[85]  K. Lehrer When Rational Disagreement is Impossible , 1976 .

[86]  A. A. Lumsdaine Communication and persuasion , 1954 .

[87]  M. Degroot Reaching a Consensus , 1974 .

[88]  Yuanyuan Tian,et al.  Systems for Big Graph Analytics , 2017, SpringerBriefs in Computer Science.

[89]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[90]  Chiara Ravazzi,et al.  Bayesian Identification of Distributed Vector AutoRegressive Processes , 2019, 2019 18th European Control Conference (ECC).

[91]  M. Ginsberg Human Nature and the Social Order , 1941, Nature.

[92]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[93]  Long Wang,et al.  Evolutionary dynamics of fairness on graphs with migration. , 2015, Journal of theoretical biology.

[94]  Steven L. Brunton,et al.  Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics , 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[95]  Pierre Vandergheynst,et al.  Random sampling of bandlimited signals on graphs , 2015, NIPS 2015.

[96]  M. Macy,et al.  Small Worlds and Cultural Polarization , 2011 .

[97]  Herbert A. Simon,et al.  Notes on the Observation and Measurement of Political Power , 1953, The Journal of Politics.

[98]  Ming Cao,et al.  Opinion evolution in time-varying social influence networks with prejudiced agents , 2017, ArXiv.

[99]  Noah E. Friedkin,et al.  Cultural Reception and Production , 2012 .

[100]  Jimeng Sun,et al.  A Survey of Models and Algorithms for Social Influence Analysis , 2011, Social Network Data Analytics.

[101]  Ming Cao,et al.  Pagerank and opinion dynamics: missing links and extensions , 2016, 2016 IEEE Conference on Norbert Wiener in the 21st Century (21CW).

[102]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[103]  Christoph Niemann,et al.  Optimal Opinion Control: The Campaign Problem , 2014, J. Artif. Soc. Soc. Simul..

[104]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[105]  Matthew Richardson,et al.  Yes, there is a correlation: - from social networks to personal behavior on the web , 2008, WWW.

[106]  J. R. French,et al.  The bases of social power. , 1959 .

[107]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[108]  Trevor J. Hastie,et al.  The Graphical Lasso: New Insights and Alternatives , 2011, Electronic journal of statistics.

[109]  Michael I. Jordan Graphical Models , 2003 .

[110]  Claudio Altafini,et al.  Dynamics of Opinion Forming in Structurally Balanced Social Networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[111]  Dirk Helbing,et al.  Individualization as Driving Force of Clustering Phenomena in Humans , 2010, PLoS Comput. Biol..

[112]  H. Künsch Gaussian Markov random fields , 1979 .

[113]  Ananthram Swami,et al.  Consensus, Polarization and Clustering of Opinions in Social Networks , 2013, IEEE Journal on Selected Areas in Communications.

[114]  Noah E. Friedkin Social Influence Network Theory , 2006 .

[115]  Constantino M. Lagoa,et al.  Randomized opinion dynamics over networks: influence estimation from partial observations , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[116]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[117]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[118]  Stephen P. Boyd,et al.  Randomized gossip algorithms , 2006, IEEE Transactions on Information Theory.

[119]  Tore Opsahl,et al.  Clustering in weighted networks , 2009, Soc. Networks.

[120]  Mark S. Granovetter T H E S T R E N G T H O F WEAK TIES: A NETWORK THEORY REVISITED , 1983 .

[121]  Naoki Masuda,et al.  Opinion control in complex networks , 2014, ArXiv.

[122]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[123]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[124]  Alexey S. Matveev,et al.  Opinion Dynamics in Social Networks With Hostile Camps: Consensus vs. Polarization , 2015, IEEE Transactions on Automatic Control.

[125]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[126]  Roberto Tempo,et al.  Novel Multidimensional Models of Opinion Dynamics in Social Networks , 2015, IEEE Transactions on Automatic Control.

[127]  Robert D. Nowak,et al.  Causal Network Inference Via Group Sparse Regularization , 2011, IEEE Transactions on Signal Processing.

[128]  J. Doogan,et al.  A new way to measure word-of- mouth marketing , 2010 .

[129]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[130]  Claudio Altafini,et al.  Consensus Problems on Networks With Antagonistic Interactions , 2013, IEEE Transactions on Automatic Control.

[131]  Phillip Bonacich,et al.  Eigenvector-like measures of centrality for asymmetric relations , 2001, Soc. Networks.

[132]  Zhigang Cao,et al.  Rebels Lead to the Doctrine of the Mean: A Heterogeneous DeGroot Model , 2018, J. Syst. Sci. Complex..

[133]  Qipeng Liu,et al.  Competitiveness Maximization on Complex Networks , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[134]  Garry Robins,et al.  An introduction to exponential random graph (p*) models for social networks , 2007, Soc. Networks.

[135]  Roberto Tempo,et al.  The PageRank Problem, Multiagent Consensus, and Web Aggregation: A Systems and Control Viewpoint , 2013, IEEE Control Systems.

[136]  Jane F. Bokunewicz,et al.  Influencer identification in Twitter networks of destination marketing organizations , 2017 .

[137]  Roberto Tempo,et al.  Network science on belief system dynamics under logic constraints , 2016, Science.

[138]  Pascal Frossard,et al.  Learning Laplacian Matrix in Smooth Graph Signal Representations , 2014, IEEE Transactions on Signal Processing.

[139]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[140]  André C. R. Martins Discrete opinion models as a limit case of the CODA model , 2014 .

[141]  Stefano Ceri,et al.  Topology comparison of Twitter diffusion networks reliably reveals disinformation news , 2019, ArXiv.

[142]  John S. Baras,et al.  The Evolution of Beliefs over Signed Social Networks , 2013, Oper. Res..

[143]  Yonina C. Eldar,et al.  Estimation in autoregressive processes with partial observations , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[144]  N. Anderson Foundations of information integration theory , 1981 .

[145]  Matthew K. O. Lee,et al.  Online social networks: Why do students use facebook? , 2011, Comput. Hum. Behav..

[146]  Guo Cao,et al.  Traffic dynamics on multilayer networks , 2020, Digit. Commun. Networks.

[147]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[148]  Noah E. Friedkin,et al.  The Problem of Social Control and Coordination of Complex Systems in Sociology: A Look at the Community Cleavage Problem , 2015, IEEE Control Systems.

[149]  Bernhard Schölkopf,et al.  Uncovering the structure and temporal dynamics of information propagation , 2014, Network Science.

[150]  Roberto Tempo,et al.  A Tutorial on Modeling and Analysis of Dynamic Social Networks. Part II , 2018, Annu. Rev. Control..

[151]  Hossein Noorazar,et al.  An Energy-Based Interaction Model for Population Opinion Dynamics with Topic Coupling , 2016, International Journal of Modern Physics C.

[152]  Noah E. Friedkin,et al.  Social Influence Network Theory: A Sociological Examination of Small Group Dynamics , 2011 .

[153]  M. Macy Polarization in Dynamic Networks : A Hopfield Model of Emergent Structure , 2003 .

[154]  S. Borgatti,et al.  Betweenness centrality measures for directed graphs , 1994 .

[155]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[156]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[157]  Alex Arenas,et al.  The multiplex network of human diseases , 2017, bioRxiv.

[158]  José M. F. Moura,et al.  Signal Processing on Graphs: Causal Modeling of Unstructured Data , 2015, IEEE Transactions on Signal Processing.

[159]  L. Festinger,et al.  A Theory of Cognitive Dissonance , 2017 .

[160]  Loretta Mastroeni,et al.  Agent-Based Models for Opinion Formation: A Bibliographic Survey , 2019, IEEE Access.

[161]  A. Flache,et al.  Differentiation without Distancing. Explaining Bi-Polarization of Opinions without Negative Influence , 2013, PloS one.

[162]  My T. Thai,et al.  Big Data in Complex and Social Networks , 2016 .

[163]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[164]  Salma Jamoussi,et al.  Deterministic models for opinion formation through communication: A survey , 2018, Online Soc. Networks Media.

[165]  Roberto Tempo,et al.  A Tutorial on Modeling and Analysis of Dynamic Social Networks. Part II , 2018, Annu. Rev. Control..

[166]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[167]  G. Caldarelli,et al.  The spreading of misinformation online , 2016, Proceedings of the National Academy of Sciences.

[168]  Noah E. Friedkin,et al.  Two steps to obfuscation , 2014, Soc. Networks.

[169]  John S. Baras,et al.  Emergent Behaviors Over Signed Random Dynamical Networks: State-Flipping Model , 2014, IEEE Transactions on Control of Network Systems.

[170]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[171]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[172]  Georgios B. Giannakis,et al.  Topology Identification and Learning over Graphs: Accounting for Nonlinearities and Dynamics , 2018, Proceedings of the IEEE.

[173]  David Lee,et al.  Biased assimilation, homophily, and the dynamics of polarization , 2012, Proceedings of the National Academy of Sciences.

[174]  Noah E. Friedkin,et al.  Network Studies of Social Influence , 1993 .