FCLUST: a visualization tool for fuzzy clustering

Emerging technologies on the World Wide Web promise to make program, algorithm and concept simulations universally accessible. Simulations involving animation and visualization have a tremendous benefit when applied to various algorithms. We present a simulation tool for experimenting with concepts in fuzzy clustering that has proved useful in visualizing the results and demonstrating the computation method of the algorithms. This is especially advantageous in a classroom or laboratory setting where students may become more comfortable with the mechanics of fuzzy clustering through personal discovery and online experimentation.

[1]  James C. Tiernan,et al.  An efficient search algorithm to find the elementary circuits of a graph , 1970, CACM.

[2]  M. Sakawa,et al.  On-Line Fault Diagnosis by Using Fuzzy Cognitive Map , 1996 .

[3]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[4]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Bart Kosko,et al.  Virtual Worlds as Fuzzy Cognitive Maps , 1993, Presence: Teleoperators & Virtual Environments.

[6]  Masafumi Hagiwara Extended Fuzzy Cognitive Maps , 1994 .

[7]  H Matsuno,et al.  Hybrid Petri net representation of gene regulatory network. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[8]  P. Hedden,et al.  Gibberellin metabolism: new insights revealed by the genes. , 2000, Trends in plant science.

[9]  Sergio Barrachina,et al.  Speeding up the computation of the edit distance for cyclic strings , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[10]  Journal of the Association for Computing Machinery , 1961, Nature.

[11]  John T. Stasko,et al.  Do algorithm animations assist learning?: an empirical study and analysis , 1993, INTERCHI.

[12]  Wolfgang Reisig,et al.  Lectures on Petri Nets I: Basic Models , 1996, Lecture Notes in Computer Science.

[13]  Horst Bunke,et al.  Applications of approximate string matching to 2D shape recognition , 1993, Pattern Recognit..

[14]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[15]  Andreas Buja,et al.  Xgobi: Interactive Dynamic Graphics In The X Window System With A Link To S , 1991 .

[16]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[17]  David Jackson,et al.  The use of animation to explain genetic algorithms , 1997, SIGCSE '97.

[18]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[19]  Nigel Collier,et al.  The GENIA project: corpus-based knowledge acquisition and information extraction from genome research papers , 1999, EACL.

[20]  Raghu Krishnapuram,et al.  Fuzzy and possibilistic clustering methods for computer vision , 1994, Other Conferences.

[21]  David Jackson,et al.  Algorithm animation of neural networks , 1996, ITiCSE '96.

[22]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[23]  Miguel A. Andrade-Navarro,et al.  Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families , 1998, Bioinform..

[24]  Francisco Casacuberta,et al.  Use of median string for classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[25]  Donald B. Johnson,et al.  Finding All the Elementary Circuits of a Directed Graph , 1975, SIAM J. Comput..

[26]  Francisco Casacuberta,et al.  Topology of Strings: Median String is NP-Complete , 1999, Theor. Comput. Sci..

[27]  Jens Gregor,et al.  Dynamic Programming Alignment of Sequences Representing Cyclic Patterns , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Dianne Cook,et al.  Manual Controls for High-Dimensional Data Projections , 1997 .

[29]  Ng,et al.  Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts. , 1999, Genome informatics. Workshop on Genome Informatics.

[30]  S Miyano,et al.  Algorithms for inferring qualitative models of biological networks. , 2000, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[31]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[32]  Horst Bunke,et al.  Recent developments in graph matching , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[33]  Suzanne M. Paley,et al.  Integrated pathway/genome databases and their role in drug discovery , 1999 .

[34]  John Alan McDonald,et al.  Interactive graphics for data analysis , 1982 .

[35]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[36]  Julie A. Dickerson,et al.  Orca: A Visualization Toolkit for High-Dimensional Data , 2000 .

[37]  M. Maes,et al.  On a Cyclic String-To-String Correction Problem , 1990, Inf. Process. Lett..

[38]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[39]  B J Stapley,et al.  Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[40]  J. P. Gray Addresses , 1869, Appetite.

[41]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[42]  Herbert Weinblatt,et al.  A New Search Algorithm for Finding the Simple Cycles of a Finite Directed Graph , 1972, JACM.

[43]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.

[44]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[45]  René David,et al.  Continuous and Hybrid Petri Nets , 1998, J. Circuits Syst. Comput..

[46]  T. Takagi,et al.  Toward information extraction: identifying protein names from biological papers. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[47]  Andreas Buja,et al.  Grand tour and projection pursuit , 1995 .

[48]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[49]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  T. Sun,et al.  Gibberellin signal transduction. , 2000, Current opinion in plant biology.

[51]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[52]  John W. Tukey,et al.  PRIM-9: An Interactive Multi-dimensional Data Display and Analysis System , 1975, ACM Pacific.

[53]  Shigeo Abe,et al.  Neural Networks and Fuzzy Systems , 1996, Springer US.

[54]  Bart Kosko,et al.  Fuzzy knowledge combination , 1986, Int. J. Intell. Syst..

[55]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[56]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[57]  Vladimir Cherkassky,et al.  Self-Organization as an Iterative Kernel Smoothing Process , 1995, Neural Computation.

[58]  Francisco Casacuberta,et al.  Efficient Techniques for a Very Accurate Measurement of Dissimilarities between Cyclic Patterns , 2000, SSPR/SPR.

[59]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[60]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[61]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[62]  Julie A. Dickerson,et al.  Fuzzy clustering of vitamin and homocysteine levels in patients with history of ischemic stroke , 1998, 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353).

[63]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Peter D. Karp,et al.  The EcoCyc and MetaCyc databases , 2000, Nucleic Acids Res..

[65]  Narsingh Deo,et al.  On Algorithms for Enumerating All Circuits of a Graph , 1976, SIAM J. Comput..

[66]  Robert E. Tarjan,et al.  Enumeration of the Elementary Circuits of a Directed Graph , 1972, SIAM J. Comput..

[67]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[68]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[69]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[70]  Mukkai S. Krishnamoorthy,et al.  A Java simulation tool for fuzzy clustering , 1997 .

[71]  Ware Myers,et al.  Interactive Computer Graphics , 1984, Computer.

[72]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[73]  T. Kohonen,et al.  Coloring that reveals high-dimensional structures in data , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[74]  Daniel Berleant,et al.  Engineering “word experts” for word disambiguation , 1995, Natural Language Engineering.

[75]  Tanaka,et al.  A Machine Learning Approach to Reducing the Work of Experts in Article Selection from Database: A Case Study for Regulatory Relations of S. cerevisiae Genes in MEDLINE. , 1998, Genome informatics. Workshop on Genome Informatics.

[76]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[77]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[78]  Johan Himberg,et al.  Enhancing SOM-based data visualization by linking different data projections , 1998 .

[79]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[80]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[81]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[82]  John T. Stasko,et al.  Empirically evaluating the use of animations to teach algorithms , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[83]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[84]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[85]  Teuvo Kohonen,et al.  Median strings , 1985, Pattern Recognit. Lett..

[86]  K. Rajan,et al.  A Java Simulation Tool for Fuzzy Clustering , 1997, Concurr. Pract. Exp..