The sigma form of the second Painlevé hierarchy

[1]  I. Bobrova On symmetries of the non-stationary $P_{II}^{(n)}$ hierarchy and their applications , 2020 .

[2]  Stuart J. Andrew Sigma form of the second Painleve hierarchy , 2014 .

[3]  M. Mazzocco,et al.  The Hamiltonian structure of the second Painlevé hierarchy , 2006, nlin/0610066.

[4]  P. Clarkson,et al.  THE LAX PAIR FOR THE MKDV HIERARCHY , 2006 .

[5]  N. Joshi The Second Painlevé Hierarchy and the Stationary KdV Hierarchy , 2004 .

[6]  B. Dubrovin,et al.  Virasoro Symmetries of the Extended Toda Hierarchy , 2003, math/0308152.

[7]  P. Clarkson,et al.  Hierarchies of Difference Equations and Bäcklund Transformations , 2003 .

[8]  B. Dubrovin,et al.  Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants , 2001, math/0108160.

[9]  P. Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.

[10]  Peter A Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1999 .

[11]  Kazuo Okamoto Studies on the Painlevé equations II. Fifth Painlevé equation PV , 1987 .

[12]  Kazuo Okamoto,et al.  Studies on the Painlev equations: III. Second and fourth painlev equations,P II andP IV , 1986 .

[13]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[14]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[15]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[16]  A. Newell,et al.  Monodromy- and spectrum-preserving deformations I , 1980 .

[17]  Peter D. Lax,et al.  Almost Periodic Solutions of the KdV Equation , 1976 .