Phase space sampling and inference from weighted events with autoregressive flows

We explore the use of autoregressive flows, a type of generative model with tractable likelihood, as a means of efficient generation of physical particle collider events. The usual maximum likelihood loss function is supplemented by an event weight, allowing for inference from event samples with variable, and even negative event weights. To illustrate the efficacy of the model, we perform experiments with leading-order top pair production events at an electron collider with importance sampling weights, and with next-to-leading-order top pair production events at the LHC that involve negative weights.

[1]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2022, 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT).

[2]  K. Hamilton,et al.  Colour and logarithmic accuracy in final-state parton showers , 2020, Journal of High Energy Physics.

[3]  D. Soper,et al.  Summations of large logarithms by parton showers , 2020, Physical Review D.

[4]  D. Soper,et al.  Summations by parton showers of large logarithms in electron-positron annihilation , 2020, 2011.04777.

[5]  K. Cranmer,et al.  Simulation-Based Inference Methods for Particle Physics , 2020, Artificial Intelligence for High Energy Physics.

[6]  Matthew D. Klimek,et al.  Improved neural network Monte Carlo simulation , 2020, 2009.07819.

[7]  Kosei Dohi,et al.  Variational Autoencoders for Jet Simulation , 2020, 2009.04842.

[8]  B. Nachman,et al.  Neural resampler for Monte Carlo reweighting with preserved uncertainties , 2020, Physical Review D.

[9]  S. Plätzer,et al.  Resummation and Simulation of Soft Gluon Effects beyond Leading Color. , 2020, Physical review letters.

[10]  Ullrich Kothe,et al.  Invertible networks or partons to detector and back again , 2020, 2006.06685.

[11]  Sebastian Pina-Otey,et al.  Exhaustive Neural Importance Sampling applied to Monte Carlo event generation , 2020, Physical Review D.

[12]  S. Prestel,et al.  A Positive Resampler for Monte Carlo events with negative weights , 2020, The European Physical Journal C.

[13]  G. Kasieczka,et al.  Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed , 2020, Computing and Software for Big Science.

[14]  Marcus A. Brubaker,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Z. Marshall,et al.  Challenges in Monte Carlo Event Generator Software for High-Luminosity LHC , 2020, Computing and Software for Big Science.

[16]  S. Plätzer,et al.  Building a consistent parton shower , 2020, Journal of High Energy Physics.

[17]  R. Frederix,et al.  On the reduction of negative weights in MC@NLO-type matching procedures , 2020, 2002.12716.

[18]  S. Carrazza,et al.  VegasFlow: Accelerating Monte Carlo simulation across multiple hardware platforms , 2020, Comput. Phys. Commun..

[19]  Frédéric A. Dreyer,et al.  Parton Showers beyond Leading Logarithmic Accuracy. , 2020, Physical review letters.

[20]  S. Badger,et al.  Using neural networks for efficient evaluation of high multiplicity scattering amplitudes , 2020, Journal of High Energy Physics.

[21]  K. Matchev,et al.  Uncertainties associated with GAN-generated datasets in high energy physics , 2020, SciPost Physics.

[22]  H. Schulz,et al.  Event generation with normalizing flows , 2020, Physical Review D.

[23]  S. Schumann,et al.  Exploring phase space with Neural Importance Sampling , 2020, SciPost Physics.

[24]  Christina Gao,et al.  i- flow: High-dimensional integration and sampling with normalizing flows , 2020, Mach. Learn. Sci. Technol..

[25]  F. Bishara,et al.  Machine learning amplitudes for faster event generation , 2019, Physical Review D.

[26]  A. Butter,et al.  How to GAN event subtraction , 2019, SciPost Physics Core.

[27]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[28]  Maurizio Pierini,et al.  Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description , 2019, Journal of Physics: Conference Series.

[29]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[30]  G. Kasieczka,et al.  How to GAN away Detector Effects , 2019, SciPost Physics.

[31]  J. Maalmi,et al.  Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks , 2019 .

[32]  T. Neumann,et al.  Precision phenomenology with MCFM , 2019, Journal of High Energy Physics.

[33]  S. Carrazza,et al.  Lund jet images from generative and cycle-consistent adversarial networks , 2019, The European Physical Journal C.

[34]  Andy Buckley Computational challenges for MC event generation , 2019, Journal of Physics: Conference Series.

[35]  Antoine Wehenkel,et al.  Unconstrained Monotonic Neural Networks , 2019, BNAIC/BENELEARN.

[36]  Yaoliang Yu,et al.  Tails of Lipschitz Triangular Flows , 2019, ICML.

[37]  Tilman Plehn,et al.  How to GAN LHC events , 2019, SciPost Physics.

[38]  Sofia Vallecorsa,et al.  3D convolutional GAN for fast simulation , 2019, EPJ Web of Conferences.

[39]  W. Bhimji,et al.  Next Generation Generative Neural Networks for HEP , 2019, EPJ Web of Conferences.

[40]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[41]  Iain Murray,et al.  Cubic-Spline Flows , 2019, ICML 2019.

[42]  H. Schulz,et al.  Simulation of vector boson plus many jet final states at the high luminosity LHC , 2019, Physical Review D.

[43]  Yaoliang Yu,et al.  Sum-of-Squares Polynomial Flow , 2019, ICML.

[44]  Nikita Kazeev,et al.  Cherenkov Detectors Fast Simulation Using Neural Networks , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[45]  Sana Ketabchi Haghighat,et al.  DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC , 2019, Journal of High Energy Physics.

[46]  Benjamin Nachman,et al.  Machine learning templates for QCD factorization in the search for physics beyond the standard model , 2019, Journal of High Energy Physics.

[47]  D. Soper,et al.  Parton showers with more exact color evolution , 2019, Physical Review D.

[48]  Damian Podareanu,et al.  Event generation and statistical sampling for physics with deep generative models and a density information buffer , 2019, Nature Communications.

[49]  Saúl Alonso-Monsalve,et al.  Image-Based Model Parameter Optimization Using Model-Assisted Generative Adversarial Networks , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[50]  L. Pang,et al.  Regressive and generative neural networks for scalar field theory , 2018, Physical Review D.

[51]  Matthew D. Klimek,et al.  Neural network-based approach to phase space integration , 2018, SciPost Physics.

[52]  Sven Krippendorf,et al.  GANs for generating EFT models , 2018, Physics Letters B.

[53]  S. Vallecorsa,et al.  Generative models for fast simulation , 2018, Journal of Physics: Conference Series.

[54]  P. Mendez Lorenzo,et al.  Three dimensional Generative Adversarial Networks for fast simulation , 2018, Journal of Physics: Conference Series.

[55]  Thomas Müller,et al.  Neural Importance Sampling , 2018, ACM Trans. Graph..

[56]  S. Plätzer,et al.  Color matrix element corrections for parton showers , 2018, Journal of High Energy Physics.

[57]  J. Monk,et al.  Deep learning as a parton shower , 2018, Journal of High Energy Physics.

[58]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[59]  Martin Erdmann,et al.  Precise Simulation of Electromagnetic Calorimeter Showers Using a Wasserstein Generative Adversarial Network , 2018, Computing and Software for Big Science.

[60]  T. Trzciński,et al.  Generative Models for Fast Cluster Simulations in the TPC for the ALICE Experiment , 2018, Advances in Intelligent Systems and Computing.

[61]  Deepak Kar,et al.  Unfolding with Generative Adversarial Networks , 2018, 1806.00433.

[62]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[63]  S. Hoche,et al.  Leading-color fully differential two-loop soft corrections to QCD dipole showers , 2018, Physical Review D.

[64]  Francesco Pandolfi,et al.  Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks , 2018, Computing and Software for Big Science.

[65]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[66]  Martin Erdmann,et al.  Generating and Refining Particle Detector Simulations Using the Wasserstein Distance in Adversarial Networks , 2018, Computing and Software for Big Science.

[67]  Michela Paganini,et al.  CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks , 2017, ArXiv.

[68]  Michela Paganini,et al.  Controlling Physical Attributes in GAN-Accelerated Simulation of Electromagnetic Calorimeters , 2017, Journal of Physics: Conference Series.

[69]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[70]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[71]  Benjamin Nachman,et al.  Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters. , 2017, Physical review letters.

[72]  F. Krauss,et al.  Implementing NLO DGLAP evolution in parton showers , 2017, Journal of High Energy Physics.

[73]  S. Hoche,et al.  Triple collinear emissions in parton showers , 2017, 1705.00742.

[74]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[75]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[76]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[77]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[78]  Luca Martino,et al.  Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..

[79]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[80]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[81]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[82]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[83]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[84]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[85]  Tiziano Peraro,et al.  Ninja: Automated integrand reduction via Laurent expansion for one-loop amplitudes , 2014, Comput. Phys. Commun..

[86]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[87]  K. Hagiwara,et al.  Fast computation of MadGraph amplitudes on graphics processing unit (GPU) , 2013, The European Physical Journal C.

[88]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[89]  R. Frederix,et al.  Merging meets matching in MC@NLO , 2012, 1209.6215.

[90]  F. Siegert,et al.  QCD matrix elements + parton showers. The NLO case , 2012, Journal of High Energy Physics.

[91]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[92]  P. Mastrolia,et al.  Integrand reduction of one-loop scattering amplitudes through Laurent series expansion , 2012, 1203.0291.

[93]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[94]  Rikkert Frederix,et al.  Automation of one-loop QCD computations , 2011, 1103.0621.

[95]  E. Nurse,et al.  General-purpose event generators for LHC physics , 2011, 1101.2599.

[96]  Andreas van Hameren,et al.  OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..

[97]  R. Pittau,et al.  Automated one-loop calculations: a proof of concept , 2009, 0903.4665.

[98]  F. Siegert,et al.  Event generation with SHERPA 1.1 , 2008, 0811.4622.

[99]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[100]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[101]  A. van Hameren,et al.  PARNI for importance sampling and density estimation , 2007, 0710.2448.

[102]  P. Nason MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions , 2007, 0709.2085.

[103]  P. Nason,et al.  Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.

[104]  D. Soper,et al.  Matching parton showers to NLO computations , 2005, hep-ph/0503053.

[105]  B. Kerševan,et al.  The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1 , 2004, Comput. Phys. Commun..

[106]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[107]  F. Krauss,et al.  QCD Matrix Elements + Parton Showers , 2001, hep-ph/0109231.

[108]  S. Jadach Foam: Multi-dimensional general purpose Monte Carlo generator with self-adapting simplical grid , 1999, physics/9910004.

[109]  T. Ohl Vegas revisited : Adaptive Monte Carlo integration beyond factorization , 1998, hep-ph/9806432.

[110]  R. Kleiss,et al.  Weight optimization in multichannel Monte Carlo , 1994, hep-ph/9405257.

[111]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[112]  E. Byckling,et al.  n-particle phase space in terms of invariant momentum transfers , 1969 .

[113]  J. Winter,et al.  Event generation with , 2009 .