Qualitative behaviour of a ratio-dependent predator-prey system

Abstract This paper deals with the qualitative properties of an autonomous system of differential equations, modeling ratio-dependent predator–prey interactions. This model differs from traditional ratio dependent models essentially in the predator mortality term, the death rate of the predator is not constant but instead increases when there is overcrowding. We incorporate delay(s) into the system. The most important observation is that as the delay(s) is (are) increased the originally asymptotic stable interior equilibrium loses its stability. Furthermore at a certain critical value a Hopf bifurcation takes place: small amplitude periodic solutions arise.

[1]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[2]  A. A. Li︠a︡punov Problems in Cybernetics , 1961, Nature.

[3]  N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference‐Differential Equation , 1950 .

[4]  Donald L. DeAngelis,et al.  A MODEL FOR TROPHIC INTERACTION , 1975 .

[5]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[6]  R Arditi,et al.  Parametric analysis of the ratio-dependent predator–prey model , 2001, Journal of mathematical biology.

[7]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[8]  H. I. Freedman,et al.  Persistence in predator-prey systems with ratio-dependent predator influence , 1993 .

[9]  Allan M. Krall,et al.  Stability techniques for continuous linear systems , 1965 .

[10]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[11]  J. Hale,et al.  Stability in Linear Delay Equations. , 1985 .

[12]  R Arditi,et al.  The biological control paradox. , 1991, Trends in ecology & evolution.

[13]  Sze-Bi Hsu,et al.  Rich dynamics of a ratio-dependent one-prey two-predators model , 2001, Journal of mathematical biology.

[14]  Roger Arditi,et al.  Ratio-Dependent Predation: An Abstraction That Works , 1995 .

[15]  M. Farkas,et al.  Bifurcations in a predator-prey model with memory and diffusion. I: Andronov-Hopf bifurcation , 1994 .

[16]  J. Hale Theory of Functional Differential Equations , 1977 .

[17]  V. Sree Hari Rao,et al.  Stability criteria for a system involving two time delays , 1986 .

[18]  Shaobo Wu,et al.  Delay-independent stability criteria for a class of retarded dynamical systems with two delays , 2004 .

[19]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[20]  T. Thingstad,et al.  Dynamics of chemostat culture:the effect of a delay in cell response. , 1974, Journal of theoretical biology.

[21]  Petra Klepac,et al.  Stabilizing dispersal delays in predator-prey metapopulation models. , 2002, Theoretical population biology.

[22]  Yong-Hong Fan,et al.  Permanence in delayed ratio-dependent predator–prey models with monotonic functional responses☆ , 2007 .

[23]  Stability of delayed ratio-dependent predator-prey system , 2003 .

[24]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[25]  Marcos Lizana,et al.  Stable periodic orbits for a predator - prey model with delay. , 2000 .

[26]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[27]  Dongmei Xiao,et al.  Global dynamics of a ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[28]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[29]  K. Cooke,et al.  Discrete delay, distributed delay and stability switches , 1982 .

[30]  K. Cooke,et al.  On zeroes of some transcendental equations , 1986 .

[31]  N. Macdonald Time lags in biological models , 1978 .

[32]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[33]  Alan A. Berryman,et al.  The Orgins and Evolution of Predator‐Prey Theory , 1992 .

[34]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[35]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.

[36]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[37]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[38]  F. G. Boese Stability with Respect to the Delay: On a Paper of K. L. Cooke and P. van den Driessche , 1998 .