FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS

SUMMARY We develop a three-dimensional nite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and ecient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack anks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional nite element discretization of the bulk material. The versatility and predictive ability of the method is demonstrated through the simulation of a drop-weight dynamic fracture test similar to those reported by Zehnder and Rosakis. 1 The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy. Copyright ? 1999 John Wiley & Sons, Ltd.

[1]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[2]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[3]  John R. Rice,et al.  Mathematical analysis in the mechanics of fracture , 1968 .

[4]  J. Lubliner On the thermodynamic foundations of non-linear solid mechanics , 1972 .

[5]  Jacob Lubliner,et al.  On the structure of the rate equations of materials with internal variables , 1973 .

[6]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[7]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[8]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[9]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[10]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[11]  Alberto Carpinteri,et al.  Mechanical damage and crack growth in concrete , 1986 .

[12]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[13]  Michael Ortiz,et al.  Microcrack coalescence and macroscopic crack growth initiation in brittle solids , 1988 .

[14]  Ares J. Rosakis,et al.  Dynamic fracture initiation and propagation in 4340 steel under impact loading , 1990 .

[15]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[16]  A. Needleman Micromechanical modelling of interfacial decohesion , 1992 .

[17]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[18]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[19]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[20]  Michael Ortiz,et al.  A variational boundary integral method for the analysis of 3‐D cracks of arbitrary geometry modelled as continuous distributions of dislocation loops , 1993 .

[21]  Subra Suresh,et al.  Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials , 1993 .

[22]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[23]  G. Ravichandran,et al.  Dynamic compressive behaviour of ceramics under lateral confinement , 1994 .

[24]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[25]  Viggo Tvergaard,et al.  Effect of strain-dependent cohesive zone model on predictions of crack growth resistance , 1996 .

[26]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[27]  Xiaopeng Xu,et al.  Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line , 1996 .

[28]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[29]  Viggo Tvergaard,et al.  Three dimensional analysis of dynamic ductile crack growth in a thin plate , 1996 .

[30]  Viggo Tvergaard,et al.  Effect of Strain Dependent Cohesive Zone Model on Predictions of Interface Crack Growth , 1996 .

[31]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[32]  A. Rosakis,et al.  Loading Rates and the Dynamic Initiation Toughness in Brittle Solids , 1998 .

[33]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .