When is a matrix unitary or Hermitian plus low rank?
暂无分享,去创建一个
Federico Poloni | Raf Vandebril | Gianna M. Del Corso | Leonardo Robol | R. Vandebril | Federico Poloni | L. Robol | G. D. Corso
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Marko Huhtanen,et al. A Stratification of the Set of Normal Matrices , 2001, SIAM J. Matrix Anal. Appl..
[3] David W. Lewis,et al. Matrix theory , 1991 .
[4] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[5] Raf Vandebril,et al. Fast and backward stable computation of the eigenvalues of matrix polynomials , 2016 .
[6] Israel Gohberg,et al. Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations , 2008, Numerical Algorithms.
[7] Raf Vandebril,et al. Fast and stable unitary QR algorithm , 2015 .
[8] Paul Van Dooren,et al. Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.
[9] Yuli Eidelman,et al. Implicit QR for rank-structured matrix pencils , 2014 .
[10] L. Reichel,et al. A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .
[11] Lothar Reichel,et al. The Arnoldi Process and GMRES for Nearly Symmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[12] S. Chandrasekaran,et al. Fast and stable eigendecomposition of symmetric banded plus semi-separable matrices , 2000 .
[13] Angelika Bunse-Gerstner,et al. Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .
[14] Gianna M. Del Corso,et al. Fast QR iterations for unitary plus low rank matrices , 2020, Numerische Mathematik.
[15] Raf Vandebril,et al. Efficient Ehrlich–Aberth iteration for finding intersections of interpolating polynomials and rational functions , 2017 .
[16] Raf Vandebril,et al. Fast and backward stable computation of eigenvalues and eigenvectors of matrix polynomials , 2016, Math. Comput..
[17] Dario Bini,et al. A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .
[18] R. C. Thompson. Principal submatrices IX: Interlacing inequalities for singular values of submatrices , 1972 .
[19] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[20] Thomas Huckle. The Arnoldi Method for Normal Matrices , 1994 .
[21] L. Elsner,et al. Normal matrices: an update , 1998 .
[22] S. Barnett. Polynomials and linear control systems , 1983 .
[23] Luca Gemignani,et al. A unitary Hessenberg QR-based algorithm via semiseparable matrices , 2005 .
[24] John Chollet,et al. On principal submatrices , 1982 .
[25] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices: Linear Systems , 2010 .
[26] Inderjit S. Dhillon,et al. The design and implementation of the MRRR algorithm , 2006, TOMS.
[27] Luca Gemignani,et al. Fast Hessenberg Reduction of Some Rank Structured Matrices , 2017, SIAM J. Matrix Anal. Appl..
[28] Fei Xue,et al. Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices , 2012, SIAM J. Matrix Anal. Appl..
[29] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[30] Gianna M. Del Corso,et al. A CMV-Based Eigensolver for Companion Matrices , 2015, SIAM J. Matrix Anal. Appl..
[31] Raf Vandebril,et al. On an Economic Arnoldi Method for BML-Matrices , 2018, SIAM J. Matrix Anal. Appl..
[32] David S. Watkins,et al. The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .
[33] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[34] Federico Poloni,et al. Factoring Block Fiedler Companion Matrices , 2019, Structured Matrices in Numerical Linear Algebra.
[35] James Demmel,et al. Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers , 2008, SIAM J. Sci. Comput..
[36] Dario A. Bini,et al. Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications , 2015, 1501.07812.
[37] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices , 2007 .
[38] Froilán M. Dopico,et al. Condition numbers for inversion of Fiedler companion matrices , 2013 .
[39] William B. Gragg,et al. The QR algorithm for unitary Hessenberg matrices , 1986 .
[40] I. Gohberg,et al. Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices , 2007, SIAM J. Matrix Anal. Appl..
[41] Jianlin Xia,et al. A Fast QR Algorithm for Companion Matrices , 2007 .
[42] Teri Barth,et al. Multiple Recursion Conjugate Gradient Algorithms Part I: Sufficient Conditions , 2000, SIAM J. Matrix Anal. Appl..
[43] Jörg Liesen. When is the Adjoint of a Matrix a Low Degree Rational Function in the Matrix? , 2007, SIAM J. Matrix Anal. Appl..
[44] Zdenek Strakos,et al. On Optimal Short Recurrences for Generating Orthogonal Krylov Subspace Bases , 2008, SIAM Rev..
[45] Dario A. Bini,et al. On a Class of Matrix Pencils and $\ell$-ifications Equivalent to a Given Matrix Polynomial , 2014, 1406.1025.
[46] Raf Vandebril,et al. An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices , 2010 .
[47] T. Chan. Rank revealing QR factorizations , 1987 .
[48] J. Neumann,et al. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .
[49] Raf Vandebril,et al. Computing the eigenvalues of symmetric tridiagonal matrices via a Cayley transformation , 2017 .
[50] David S. Watkins,et al. Chasing algorithms for the eigenvalues problem , 1991 .
[51] I. Gohberg,et al. Implicit QR with Compression , 2012 .
[52] Paul Van Dooren,et al. A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..