Seismic Wavelet Estimation Using High-Order Statistics and Chaos-Genetic Algorithm

Accurate and effective seismic wavelet estimation has an extreme significance in the seismic data processing of high resolution, high signal-to-noise ratio and high fidelity. The emerging non-liner optimization methods enhance the applied potential for the statistical method of seismic wavelet extraction. Because non-liner optimization algorithms in the seismic wavelet estimation have the defects of low computational efficiency and low precision, Chaos-Genetic Algorithm (CGA) based on the cat mapping is proposed which is applied in the multi-dimensional and multi-modal non-linear optimization. The performance of CGA is firstly verified by four test functions, and then applied to the seismic wavelet estimation. Theoretical analysis and numerical simulation demonstrate that CGA has better convergence speed and convergence performance.