Reactive hot pressing of super hard (Ti,Ta)(B,C)–(Ta,Ti)C composites

[1]  Yu Zhou,et al.  Reactive sintering behavior and enhanced densification of (Ti,Zr)B2–(Zr,Ti)C composites , 2020 .

[2]  Longke Bao,et al.  Predictions of structural, electronic, mechanical, and thermodynamic properties of TMBCs (TM = Ti, Zr, and Hf) ceramics , 2020 .

[3]  Mingzhi Wang,et al.  A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies , 2020 .

[4]  J. Zou,et al.  In-situ ZrB2- hBN ceramics with high strength and low elasticity , 2020 .

[5]  Mehdi Shahedi Asl,et al.  Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites , 2020 .

[6]  J. Zou,et al.  Reactive sintering of B4C-TaB2 ceramics via carbide boronizing: Reaction process, microstructure and mechanical properties , 2019 .

[7]  Huang-Chuan Chen,et al.  Densification behavior and mechanical properties of spark plasma reaction sintered ZrB2–ZrC-B4C ceramics from B4C-Zr system , 2019, Ceramics International.

[8]  Yu Zhou,et al.  Microstructure and mechanical properties of TiB2-40 wt% TiC composites: Effects of adding a low-temperature hold prior to sintering at high temperatures , 2018, Ceramics International.

[9]  Yu Zhou,et al.  Densification, mechanical and thermal properties of ZrC1 − x ceramics fabricated by two-step reactive hot pressing of ZrC and ZrH2 powders , 2018 .

[10]  G. Hilmas,et al.  Titanium diboride–silicon carbide–boron carbide ceramics with super‐high hardness and strength , 2018 .

[11]  G. Goller,et al.  Spark plasma sintering and characterization of ZrC-TiB2 composites , 2017 .

[12]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[13]  Chenglong Hu,et al.  Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review , 2017 .

[14]  R. Koç,et al.  Sintering and mechanical properties of TiB 2 -TiC-Ni using submicron borides and carbides , 2016 .

[15]  Y. Sakka,et al.  High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation , 2016 .

[16]  Y. Sakka,et al.  High-temperature reactive spark plasma consolidation of TiB2–NbC ceramic composites , 2015 .

[17]  Mehdi Shahedi Asl,et al.  Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite , 2015 .

[18]  T. Fisher,et al.  Reactive Hot Pressing and Properties of Zr1−xTixB2–ZrC Composites , 2015 .

[19]  Y. Sakka,et al.  High-temperature reaction consolidation of TaC–TiB2 ceramic composites by spark-plasma sintering , 2015 .

[20]  Yong Du,et al.  Thermodynamic evaluation of the C–Ta–Ti system and extrapolation to the C–Ta–Ti–N system , 2013 .

[21]  Chuanzhen Huang,et al.  Mechanical properties and microstructure of TiB2–TiC composite ceramic cutting tool material , 2012 .

[22]  G. Tu,et al.  Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering , 2012 .

[23]  Alan W. Weimer,et al.  Carbide, Nitride and Boride Materials Synthesis and Processing , 2011 .

[24]  Seung Jun Lee,et al.  Fabrication and Properties of Reactively Hot Pressed HfB₂-HfC Ultra-High Temperature Ceramics , 2010 .

[25]  E. Olevsky,et al.  Spark plasma sintering of tantalum carbide , 2010 .

[26]  Guo‐Jun Zhang,et al.  Microstructures and Mechanical Properties of Hot‐Pressed ZrB2‐Based Ceramics from Synthesized ZrB2 and ZrB2‐ZrC Powders , 2009 .

[27]  G. Hilmas,et al.  Densification and mechanical properties of TaC-based ceramics , 2009 .

[28]  V. Jayaram,et al.  Processing of Refractory Metal Borides, Carbides and Nitrides , 2008 .

[29]  A. Chrysanthou,et al.  TiC-TiB2 composites : A review of phase relationships, processing and properties , 2008 .

[30]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[31]  Swapan Das,et al.  Sintering and microstructural behaviour of SHS produced zirconium diboride powder with the addition of C and TiC , 2005 .

[32]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[33]  G. Wen,et al.  Reaction synthesis of TiB2-TiC composites with enhanced toughness , 2001 .

[34]  Yi-bing Cheng,et al.  Formation of TiB2–TiC composites by reactive sintering , 1999 .

[35]  A. Gusev Phase Equilibria in the Ternary System Titanium–Boron–Carbon: The Sections TiCy–TiB2and B4Cy–TiB2 , 1997 .

[36]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[37]  H. Endo,et al.  Hot-Pressing of TiC-Graphite Composite Materials , 1993 .

[38]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .

[39]  John D. Vekables The nature of precipitates in boron-doped TiC. , 1967 .

[40]  C. Lynch,et al.  The microstructure of single-crystal titanium diboride , 1966 .