A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

Abstract. Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.

[1]  Richard Neale,et al.  Application of MJO Simulation Diagnostics to Climate Models , 2009 .

[2]  Donald D. Lucas,et al.  The parametric sensitivity of CAM5's MJO , 2014 .

[3]  P. Bougeault,et al.  Modeling the Trade-Wind Cumulus Boundary Layer. Part I: Testing the Ensemble Cloud Relations Against Numerical Data. , 1981 .

[4]  V. Larson,et al.  Using Probability Density Functions to Derive Consistent Closure Relationships among Higher-Order Moments , 2005 .

[5]  Brian M. Griffin,et al.  Analytic upscaling of a local microphysics scheme. Part II: Simulations , 2013 .

[6]  W. S. Lewellen,et al.  Binormal Model of Ensemble Partial Cloudiness , 1993 .

[7]  Mitchell W. Moncrieff,et al.  Representing convective organization in prediction models by a hybrid strategy , 2006 .

[8]  I. Kang,et al.  Structure of AGCM-Simulated Convectively Coupled Kelvin Waves and Sensitivity to Convective Parameterization , 2011 .

[9]  S. Krueger,et al.  A simplified PDF parameterization of subgrid‐scale clouds and turbulence for cloud‐resolving models , 2013 .

[10]  Vincent E. Larson,et al.  PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km , 2012 .

[11]  Patrick T. Haertel,et al.  Convectively coupled equatorial waves , 2009 .

[12]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[13]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[14]  Howard W. Barker,et al.  The Monte Carlo Independent Column Approximation's Conditional Random Noise: Impact on Simulated Climate , 2005 .

[15]  Philip J. Rasch,et al.  Parameterizing deep convection using the assumed probability density function method , 2014 .

[16]  P. Xavier Intraseasonal Convective Moistening in CMIP3 Models , 2012 .

[17]  I. Bladé Dynamics, Thermodynamics and Extratropical Interactions of Tropical Intraseasonal Oscillations in a Simple Nonlinear Model. , 1993 .

[18]  B. Stevens,et al.  What Controls the Transition from Shallow to Deep Convection , 2009 .

[19]  Sungsu Park,et al.  A Unified Convection Scheme (UNICON). Part I: Formulation , 2014 .

[20]  Leo J. Donner,et al.  A Cumulus Parameterization Including Mass Fluxes, Vertical Momentum Dynamics, and Mesoscale Effects , 1993 .

[21]  M. Giorgetta,et al.  Tests of Monte Carlo Independent Column Approximation in the ECHAM5 Atmospheric GCM , 2007 .

[22]  P. Bougeault,et al.  Modeling the Trade-Wind Cumulus Boundary Layer. Part II: A High-Order One-Dimensional Model , 1981 .

[23]  W. Grabowski Coupling Cloud Processes with the Large-Scale Dynamics Using the Cloud-Resolving Convection Parameterization (CRCP) , 2001 .

[24]  J. Deardorff,et al.  Subgrid-Scale Condensation in Models of Nonprecipitating Clouds , 1977 .

[25]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[26]  Joao Teixeira,et al.  Implementation of a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization into the Navy Global Environmental Model , 2014 .

[27]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[28]  H. Niino,et al.  An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification , 2004 .

[29]  R. Hemler,et al.  Multivariate probability density functions with dynamics in the GFDL Atmospheric General Circulation Model: Global tests , 2014 .

[30]  Jun-Ichi Yano,et al.  Mode decomposition as a methodology for developing convective‐scale representations in global models , 2005 .

[31]  Yonghua Chen,et al.  CORRIGENDUM of the MJO Transition from Shallow to Deep Convection in Cloudsat-Calipso Data and GISS GCM Simulations , 2012 .

[32]  Katherine Thayer-Calder,et al.  The Role of Convective Moistening in the Madden–Julian Oscillation , 2009 .

[33]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[34]  Kuan-Man Xu,et al.  Simulation of shallow cumuli and their transition to deep convective clouds by cloud‐resolving models with different third‐order turbulence closures , 2006 .

[35]  Vincent E. Larson,et al.  Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling , 2005 .

[36]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[37]  V. Larson,et al.  Quadrature Methods for the Calculation of Subgrid Microphysics Moments , 2015 .

[38]  P. Räisänen,et al.  Explicit representation of subgrid variability in cloud microphysics yields weaker aerosol indirect effect in the ECHAM5-HAM2 climate model , 2014 .

[39]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[40]  A. Tompkins A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover , 2002 .

[41]  W. Cotton,et al.  Small-Scale and Mesoscale Variability in Cloudy Boundary Layers: Joint Probability Density Functions , 2002 .

[42]  P. Räisänen,et al.  Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2 , 2013 .

[43]  D. Randall,et al.  A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results , 2001 .

[44]  Noise due to the Monte Carlo independent‐column approximation: short‐term and long‐term impacts in ECHAM5 , 2008 .

[45]  V. Larson,et al.  A flexible importance sampling method for integrating subgrid processes , 2015 .

[46]  J. David Neelin,et al.  Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection , 2009 .

[47]  Paul Ginoux,et al.  CLUBB as a unified cloud parameterization: Opportunities and challenges , 2015 .

[48]  M. Köhler,et al.  A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport , 2009 .

[49]  Cathy Hohenegger,et al.  Simulating deep convection with a shallow convection scheme , 2010 .

[50]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[51]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description , 2002 .

[52]  A. Sobel,et al.  The Global Circulation of the Atmosphere , 2021 .

[53]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[54]  George L. Mellor,et al.  The Gaussian Cloud Model Relations , 1977 .

[55]  David A. Randall,et al.  Structure of the Madden-Julian Oscillation in the Superparameterized CAM , 2009 .

[56]  Howard W. Barker,et al.  Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation , 2004 .

[57]  Jean-Christophe Golaz,et al.  Sensitivity of the Aerosol Indirect Effect to Subgrid Variability in the Cloud Parameterization of the GFDL Atmosphere General Circulation Model AM3 , 2011 .

[58]  Stephen A. Klein,et al.  The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model , 1999 .

[59]  Peter A. Bogenschutz,et al.  Assumed Probability Density Functions for Shallow and Deep Convection , 2010 .

[60]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[61]  Richard Neale,et al.  Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection , 2014 .

[62]  W. Collins,et al.  Geoscientific Model Development Toward a minimal representation of aerosols in climate models : description and evaluation in the Community Atmosphere Model CAM 5 , 2012 .

[63]  Andrew Gettelman,et al.  Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions* , 2015 .

[64]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .

[65]  David A. Randall,et al.  Toward a Unified Parameterization of the Boundary Layer and Moist Convection. Part I: A New Type of Mass-Flux Model , 2001 .

[66]  Andrew Gettelman,et al.  Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes. , 2015 .

[67]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[68]  Vincent E. Larson,et al.  The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator , 2013 .

[69]  C. Bretherton,et al.  Mechanisms of Low Cloud–Climate Feedback in Idealized Single-Column Simulations with the Community Atmospheric Model, Version 3 (CAM3) , 2008 .

[70]  Joao Teixeira,et al.  A Unified Model for Moist Convective Boundary Layers Based on a Stochastic Eddy-Diffusivity/Mass-Flux Parameterization , 2013 .

[71]  Matthew E. Peters,et al.  Relationships between Water Vapor Path and Precipitation over the Tropical Oceans , 2004 .

[72]  David A. Randall,et al.  Evaluation of the Simulated Interannual and Subseasonal Variability in an AMIP-Style Simulation Using the CSU Multiscale Modeling Framework , 2008 .

[73]  Robert Pincus,et al.  The Monte Carlo Independent Column Approximation: an assessment using several global atmospheric models , 2008 .

[74]  D. P. Schanen,et al.  Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model , 2013 .

[75]  G. Matheou,et al.  Eddy Diffusivity/Mass Flux and Shallow Cumulus Boundary Layer: An Updraft PDF Multiple Mass Flux Scheme , 2012 .

[76]  Kuan Xu,et al.  Simulation of Boundary-Layer Cumulus and Stratocumulus Clouds using a Cloud-Resolving Model With Low- and Third-Order Turbulence Closures , 2008 .

[77]  J. Morcrette,et al.  A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields , 2003 .

[78]  Mitchell W. Moncrieff,et al.  Organized convective systems : archetypal dynamical models, mass and momentum flux theory, and parametrization , 1992 .

[79]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[80]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[81]  U. Lohmann,et al.  A statistical subgrid-scale algorithm for precipitation formation in stratiform clouds in the ECHAM5 single column model , 2011 .

[82]  S. Klein,et al.  Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model , 2005 .

[83]  I. Kang,et al.  The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves , 2008 .

[84]  D. Randall,et al.  Observed Characteristics of the MJO Relative to Maximum Rainfall , 2007 .

[85]  D. Randall,et al.  Stochastic generation of subgrid‐scale cloudy columns for large‐scale models , 2004 .

[86]  Vincent E. Larson,et al.  Analytic upscaling of a local microphysics scheme. Part I: Derivation , 2013 .

[87]  Parameterization of the Spatial Variability of Rain for Large-Scale Models and Remote Sensing , 2015 .

[88]  Vincent E. Larson,et al.  Systematic Biases in the Microphysics and Thermodynamics of Numerical Models That Ignore Subgrid-Scale Variability , 2001 .

[89]  Richard G. Forbes,et al.  Daytime convective development over land: A model intercomparison based on LBA observations , 2006 .

[90]  A. P. Siebesma,et al.  A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer , 2007 .