AFBC power systems for rural villages

A project definition study was completed for a 500 kWe to 1 MWe FBC power plant for electrical and process heat production in a remote Alaskan application. The plant will utilize advanced atmospheric fluidized bed combustion technology as the primary steam generator co-firing an Alaskan subbituminous coal, local limestone and municipal solid waste. To develop FBC performance characteristics for input to the performance modeling and project definition study, test firing of Little Tonzona coal and McGrath limestone in an atmospheric fluidized bed combustor of a scale suitable for incorporation into a small power plant facility was completed. The test data generated includes primary emissions analyses, bed and fly ash analyses, and test unit operational conditions (pressure, bed height, gas velocity and bed temperature). Combustion efficiency as carbon conversion, SO{sub 2} removal efficiency, and limestone utilization were then estimated from the above data. To ensure site conditions would model those found in Alaska, the town of McGrath, Alaska in the region of the upper Kushokwim river valley was selected as a potential plant site. McGrath, like many remote Alaskan villages is dependent upon costly oil-fired diesel power generation and annual subsidy payment from the State of Alaska, through the Power Costmore » Equalization Program (PCE), to provide village residents with affordable electricity. In the near future rural village utilities will be faced with increased cost of electricity due to transportation, handling, and storage costs of diesel fuel and reduction of funds from the PCE.« less