A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method

Recently, it has been shown that if the paraxial wave equation is modified such that fields travel imaginary distances, the field resulting from an imaginary-distance propagation is the fundamental mode of an optical waveguide. For the finite-difference beam-propagation method, we derive the factor by which each eigenmode is amplified during one propagation step. This amplification factor places limits on the inputs-step size, input field, effective index guess, and implicitness parameter-and gives clues on how to optimize the inputs. In particular, we identify and study two optimal sets of inputs, which can reduce computational time significantly. We can obtain the fundamental mode and its propagation constant within a few propagation steps. >

[1]  M. S. Stern Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles , 1988 .

[2]  M. D. Feit,et al.  Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method. , 1980, Applied optics.

[3]  N. Kumagai,et al.  Analysis of the guided modes in slab-coupled waveguides using a variational method , 1976 .

[4]  G. Hugh Song Transparent boundary conditions for beam-propagation analysis from the Green’s function method , 1993 .

[5]  G. R. Hadley,et al.  Transparent boundary condition for beam propagation. , 1991, Optics letters.

[6]  H. A. Haus,et al.  Simple variational approach to optical rib waveguides , 1990, Integrated Photonics Research.

[7]  D Yevick,et al.  Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis. , 1992, Optics letters.

[8]  Wei-Ping Huang,et al.  Efficient and accurate vector mode calculations by beam propagation method , 1993 .

[9]  R J Hawkins,et al.  Propagation properties of single-mode dielectric waveguide structures: a path integral approach. , 1987, Applied optics.

[10]  F. Fernández,et al.  Review of finite element methods for microwave and optical waveguides , 1991, Proc. IEEE.

[11]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[12]  A. G. Fox,et al.  Resonant modes in a maser interferometer , 1961 .

[13]  Wei-Ping Huang,et al.  The finite-difference vector beam propagation method: analysis and assessment , 1992 .

[14]  M. Feit,et al.  Calculation of dispersion in graded-index multimode fibers by a propagating-beam method. , 1979, Applied optics.

[15]  Youngchul Chung,et al.  An assessment of finite difference beam propagation method , 1990 .

[16]  Gijsbertus J.M. Krijnen,et al.  New formulation of the beam propagation method based on the slowly varying envelope approximation , 1993 .

[17]  William H. Press,et al.  Numerical recipes : the art of scientific computing : FORTRAN version , 1989 .

[18]  J. C. Chen,et al.  Computation of higher-order waveguide modes by imaginary-distance beam propagation method , 1994 .

[19]  Paul Lagasse,et al.  Beam-propagation method: analysis and assessment , 1981 .

[20]  P. Mawby,et al.  Solution to the wave equation in the numerical simulation of buried heterostructure lasers , 1993 .

[21]  David Yevick,et al.  New approach to lossy optical waveguides , 1985 .

[22]  Daniël De Zutter,et al.  Comparison of different modelling techniques for longitudinally invariant integrated optical waveguides , 1989 .

[23]  David Yevick,et al.  New formulations of the matrix beam propagation method: application to rib waveguides , 1989 .

[24]  H. Kogelnik Theory of Optical Waveguides , 1988 .

[25]  P.K.W. Vinsome,et al.  Block iterative methods for fully implicit reservoir simulation , 1982 .

[26]  G. R. Hadley,et al.  Transparent boundary condition for the beam propagation method , 1992 .

[27]  M. J. Robertson,et al.  Theory for calculating approximate values for the propagation constants of an optical rib waveguide by weighting the refractive indices , 1987 .