Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process

Abstract A 3000 μm × 3000 μm × 500 μm in-plane, gap overlap, electrostatic comb-drive operating in charge-constrained cycle is developed to harvest ambient vibration. This is the smallest vibration harvester resonating at 105 Hz, implementable by standard CMOS process and compatible to System-on-Chip (SoC) design. The 2000 μm × 2200 μm × 450 μm (4.9 mg) vibrating mass is made of the CMOS handle layer so as to achieve low frequency operation. Design verifications show that, with the excitation input of 10 μm amplitude at 105 Hz, the harvester can generate an average output power of 0.0924 μW, or equivalent output density 0.021 μW/mm 3 . The design is the most area-efficient CMOS vibration energy harvester reported to date.

[1]  H. Morimura,et al.  Novel MEMS power generator with integrated thermoelectric and vibrational devices , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[2]  S. Basrour,et al.  High damping electrostatic system for vibration energy scavenging , 2005, sOc-EUSAI '05.

[3]  Bruce E. White Energy-harvesting devices: beyond the battery. , 2008, Nature nanotechnology.

[4]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[5]  Robert Puers,et al.  Power Extraction from Ambient Vibration , 2001 .

[6]  Chengkuo Lee,et al.  Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect , 2009 .

[7]  Kiichi Tsuchiya,et al.  Development of an Electrostatic Generator that Harnesses the Motion of a Living Body : Use of a Resonant Phenomenon , 2000 .

[8]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[9]  T. S. Birch,et al.  Development of an electromagnetic micro-generator , 1997 .

[10]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[11]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[12]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[13]  K. Najafi,et al.  Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications , 2008, IEEE Sensors Journal.

[14]  Libor Rufer,et al.  Dynamic simulation of an implemented electrostatic power micro-generator , 2005 .

[15]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[16]  H.F. Ragaie,et al.  A lateral comb-drive structure for energy scavenging , 2004, International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04..

[17]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[18]  T.C. Green,et al.  Architectures for vibration-driven micropower generators , 2004, Journal of Microelectromechanical Systems.

[19]  N. Kabei,et al.  Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion , 2002, Journal of Artificial Organs.

[20]  N. Kasagi,et al.  Micro Seismic Power Generator Using Electret Polymer Film , 2004 .

[21]  Hidetoshi Tanaka,et al.  Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment , 2003, ISLPED '03.

[22]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[23]  P. Miao,et al.  Analysis and Optimisation of MEMS Electrostatic On-Chip Power Supply for Self-Powering of Slow-Moving Sensors , 2003 .

[24]  Rinaldo Castello,et al.  Implementation of a CMOS LNA plus mixer for GPS applications with no external components , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[25]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.