Energy loss of protons in carbon nanotubes: Experiments and calculations

Abstract We have studied the energy loss of protons in multi-walled carbon nanotube (MWCNT) samples, both experimentally and theoretically. The experiments were done in transmission geometry, using 6 and 10 keV proton beams, with the MWCNT targets dispersed on top of a ∼20 nm-thick holey carbon coated TEM grid (amorphous carbon film, a-C). The energy loss of protons interacting with the MWCNTs and the amorphous carbon film is obtained after analyzing the signals coming from both types of carbon allotropes. The electronic energy loss of protons is calculated using the dielectric formalism, with the target energy loss function built from optical data. Comparison of experimental and theoretical data indicates that model calculations appropriate for three-dimensional (bulk) targets substantially overestimate the energy loss to MWCNTs. In contrast, a recent parameterization of the dielectric function of MWCNTs predicts significantly lower stopping power values compared to the bulk models, which is more in line with the present experimental data when considering the additional stopping mechanisms that are effective in the keV range.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Bingqing Wei,et al.  Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions , 2003 .

[3]  Ganapathiraman Ramanath,et al.  Nanomachining carbon nanotubes with ion beams , 2004 .

[4]  J. Keinonen,et al.  Stopping of energetic ions in carbon nanotubes , 2003 .

[5]  M. Dresselhaus Carbon nanotubes , 1995 .

[6]  A. Tello,et al.  Synthesis of carbon nanotubes and nanofibers by decomposition of acetylene over a SMAD palladium catalyst , 2007 .

[7]  Kai Nordlund,et al.  Ion-irradiation-induced defects in bundles of carbon nanotubes , 2002 .

[8]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  K. Sturm Electron energy loss in simple metals and semiconductors , 1982 .

[11]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[12]  Maurizio Prato,et al.  CELL-PENETRATING CNTS FOR DELIVERY OF THERAPEUTICS , 2007 .

[13]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[14]  M. Nastasi,et al.  Ion-Solid Interactions: Fundamentals and Applications , 1996 .

[15]  J. Fernández-Varea,et al.  Calculated energy loss of swift He, Li, B, and N ions in SiO2, Al2O3, and ZrO2 , 2005 .

[16]  L. Amaral,et al.  Channeling on carbon nanotubes: a molecular dynamics approach. , 2005, The journal of physical chemistry. B.

[17]  Kostas Kostarelos,et al.  Electron inelastic mean free paths for carbon nanotubes from optical data , 2009 .

[18]  R. H. Ritchie,et al.  Semiclassical image potential at a solid surface , 1981 .

[19]  R. García-Molina,et al.  Projectile polarization effects in the energy loss of swift ions in solids , 2002 .

[20]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[21]  Z. Mišković Interactions of ions with carbon nano-structures , 2008 .

[22]  N. Arista,et al.  Dielectric description of wakes and stopping powers in solids , 1998 .

[23]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[24]  Herwig G. Paretzke,et al.  Inelastic-collision cross sections of liquid water for interactions of energetic protons , 2000 .

[25]  M. O. Manasreh,et al.  Proton irradiation effect on single-wall carbon nanotubes in a poly(3-octylthiophene) matrix , 2005 .

[26]  R. García-Molina,et al.  Allotropic effects on the energy loss of swift H+ and He+ ion beams through thin foils , 2006 .

[27]  P. Vargas,et al.  Threshold effect in the energy loss of hydrogen and helium ions transmitted in channeling conditions in gold single crystal , 2008, Microelectron. J..

[28]  N. Zabala,et al.  Inelastic scattering of fast electrons in nanowires: A dielectric formalism approach , 2001 .

[29]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[30]  Bin Chen,et al.  Proton Irradiation of Carbon Nanotubes , 2003 .

[31]  N. D. Mermin,et al.  Lindhard Dielectric Function in the Relaxation-Time Approximation , 1970 .

[32]  Kai Nordlund,et al.  Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes , 2004 .

[33]  Kai Nordlund,et al.  Irradiation effects in carbon nanotubes , 2004 .

[34]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[35]  Satoru Suzuki,et al.  Healing of Low-Energy Irradiation-Induced Defects in Single-Walled Carbon Nanotubes at Room Temperature , 2007 .

[36]  Vladimir A. Basiuk,et al.  Irradiation of Single-Walled Carbon Nanotubes with High-Energy Protons , 2002 .

[37]  A. Krasheninnikov,et al.  Role of electronic excitations in ion collisions with carbon nanostructures. , 2006, Physical review letters.

[38]  R. Kuzuo,et al.  Electron Energy-Loss Spectra of Carbon Nanotubes , 1992 .

[39]  Werner Brandt,et al.  Effective stopping-power charges of swift ions in condensed matter , 1982 .

[40]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .