Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations

Abstract This review deals with the recent developments and present status of the theoretical models for the simulation of the performance of lithium ion batteries. Preceded by a description of the main materials used for each of the components of a battery -anode, cathode and separator- and how material characteristics affect battery performance, a description of the main theoretical models describing the operation and performance of a battery are presented. The influence of the most relevant parameters of the models, such as boundary conditions, geometry and material characteristics are discussed. Finally, suggestions for future work are proposed.

[1]  F. Alloin,et al.  Plasticized microporous poly(vinylidene fluoride) separators for lithium‐ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes , 2004 .

[2]  Jung-Ki Park,et al.  Principles and applications of lithium secondary batteries , 2012 .

[3]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[4]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[5]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[6]  John P. Holdren,et al.  The Energy Innovation Imperative: Addressing Oil Dependence, Climate Change, and Other 21st Century Energy Challenges , 2006, Innovations: Technology, Governance, Globalization.

[7]  Xin Zhao,et al.  Materials for rechargeable lithium-ion batteries. , 2012, Annual review of chemical and biomolecular engineering.

[8]  C. Vincent Lithium batteries : a 50-year perspective, 1959-2009 , 2000 .

[9]  L. Verdolotti,et al.  Effects of the addition of LiCl, LiClO4, and LiCF3SO3 salts on the chemical structure, density, electrical, and mechanical properties of rigid polyurethane foam composite , 2011 .

[10]  B. Scrosati,et al.  A study on PVdF-based SiO2-containing composite gel-type polymer electrolytes for lithium batteries , 2004 .

[11]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[12]  S. X. Dou,et al.  Structural and electrochemical characteristics of Li/sub 1+x/Mn/sub 2+x/O/sub 4/ and LiMn/sub 2/O/sub 4-/spl delta// for secondary lithium batteries , 1998, Thirteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference.

[13]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[14]  Dinh Quan Nguyen,et al.  Fillers for Solid-State Polymer Electrolytes: Highlight , 2009 .

[15]  Elton J. Cairns,et al.  Rechargeable Li/LiFePO4 cells using N-methyl-N-butyl pyrrolidinium bis(trifluoromethane sulfonyl)imide–LiTFSI electrolyte incorporating polymer additives , 2008 .

[16]  Ralph E. White,et al.  Capacity Fade Mechanisms and Side Reactions in Lithium‐Ion Batteries , 1998 .

[17]  V. Dusastre,et al.  Materials for sustainable energy : a collection of peer-reviewed research and review articles from Nature Publishing Group , 2010 .

[18]  Yun-Sung Lee,et al.  LiMnPO4 - A next generation cathode material for lithium-ion batteries , 2013 .

[19]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[20]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[21]  Ralph E. White,et al.  Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory , 2004 .

[22]  I. Dincer Renewable energy and sustainable development: a crucial review , 2000 .

[23]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .

[24]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[25]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[26]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[27]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[28]  V. Subramanian,et al.  Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion Battery Models , 2009, ECS Transactions.

[29]  Ganesan Nagasubramanian,et al.  Modeling capacity fade in lithium-ion cells , 2005 .

[30]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[31]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[32]  John N. Harb,et al.  Mathematical model of the discharge behavior of a spirally wound lead-acid cell , 1999 .

[33]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[34]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[35]  J. Paulsen,et al.  Numerical simulation of porous networks in relation to battery electrodes and separators , 2003 .

[36]  Philip N. Ross,et al.  Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6 , 2006 .

[37]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[38]  Kun Gao,et al.  Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells , 2006 .

[39]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[40]  J. G. Rocha,et al.  Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride–trifluoroethylene) lithium-ion battery separators , 2013, Journal of Solid State Electrochemistry.

[41]  Ralph E. White,et al.  Theoretical Analysis of Stresses in a Lithium Ion Cell , 2010 .

[42]  Andrew F. Burke,et al.  Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles , 2007, Proceedings of the IEEE.

[43]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[44]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[45]  Hansan Liu,et al.  Lithium-ion batteries : advanced materials and technologies , 2016 .

[46]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[47]  C. Delmas,et al.  Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .

[48]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[49]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Munshi Handbook of Solid State Batteries and Capacitors , 1995 .

[51]  John McPhee,et al.  Simplification and order reduction of lithium-ion battery model based on porous-electrode theory , 2012 .

[52]  J. G. Rocha,et al.  Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators , 2012 .

[53]  Zhaohui Li,et al.  A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery , 2009 .

[54]  M. J. Reddy,et al.  Porous PVDF with LiClO4 complex as ‘solid’ and ‘wet’ polymer electrolyte , 2004 .

[55]  Seunghun Jung Mathematical model of lithium-ion batteries with blended-electrode system , 2014 .

[56]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[57]  F. Alloin,et al.  Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. I. Swelling behavior of dense membranes with respect to a liquid electrolyte: Characterization of the swelling equilibrium , 2004 .

[58]  Risei Wada,et al.  Sol-gel transitions of poly(vinylidene fluoride) in organic solvents containing LiBF4 , 2011 .

[59]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[60]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[61]  Yang-Kook Sun,et al.  Structural, Electrochemical, and Thermal Aspects of Li [ ( Ni0.5Mn0.5 ) 1 − x Co x ] O2 ( 0 ≤ x ≤ 0.2 ) for High-Voltage Application of Lithium-Ion Secondary Batteries , 2008 .

[62]  K. Kinoshita,et al.  Commercial Carbonaceous Materials as Lithium Intercalation Anodes , 1995 .

[63]  G. Rigobert,et al.  Lithium-ion batteries for electric vehicles: performances of 100 Ah cells , 1997 .

[64]  Venkatasailanathan Ramadesigan,et al.  Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density , 2013 .

[65]  Wenzhi Li,et al.  A review of application of carbon nanotubes for lithium ion battery anode material , 2012 .

[66]  M. Whittingham,et al.  Science and Applications of Mixed Conductors for Lithium Batteries , 2000 .

[67]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[68]  Y. W. Kim,et al.  Lithium ion conduction in PEO–salt electrolytes gelled with PAN , 1998 .

[69]  Ki-Young Lee,et al.  Effect of Surface Structure on the Irreversible Capacity of Various Graphitic Carbon Electrodes , 1999 .

[70]  Jeff Dahn,et al.  Lithium‐Ion Cells with Aqueous Electrolytes , 1995 .

[71]  M. Inagaki,et al.  Carbon materials Structure, texture and intercalation , 1996 .

[72]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[73]  T. Gerdes,et al.  Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition , 2009 .

[74]  Dongwook Han,et al.  Tailoring crystal structure and morphology of LiFePO₄/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO₄ seed crystals. , 2013, ACS applied materials & interfaces.

[75]  Ralph E. White,et al.  Characterization of Commercially Available Lithium-Ion Batteries , 1998 .

[76]  Tatsuo Nakamura,et al.  Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery , 2008 .

[77]  J. Dahn,et al.  Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries , 2005 .

[78]  Keith Scott,et al.  Modelling of electrolyte degradation and cycling behaviour in a lithium–air battery , 2013 .

[79]  Ann Marie Sastry,et al.  Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials , 2010 .

[80]  B. Popov,et al.  Simulation of charge–discharge cycling of lithium-ion batteries under low-earth-orbit conditions , 2006 .

[81]  N. Kalaiselvi,et al.  Optimisation of PVdF-based polymer electrolytes , 2001 .

[82]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[83]  John Newman,et al.  Two-Dimensional Modeling of Lithium Deposition during Cell Charging , 2008 .

[84]  Won Il Cho,et al.  Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes , 2012, Journal of Applied Electrochemistry.

[85]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[86]  R. J. Brodd,et al.  Lithium-ion batteries : science and technologies , 2009 .

[87]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[88]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[89]  Antonio Flores-Tlacuahuac,et al.  Modeling and simulation of lithium-ion batteries , 2011, Comput. Chem. Eng..

[90]  Roger A. Dougal,et al.  Dynamic lithium-ion battery model for system simulation , 2002 .

[91]  Keld West,et al.  Modeling of Porous Insertion Electrodes with Liquid Electrolyte , 1982 .

[92]  Andrew C. Chu,et al.  Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles , 2002 .

[93]  A. Webber Conductivity and Viscosity of Solutions of LiCF3 SO 3, Li ( CF 3 SO 2 ) 2 N , and Their Mixtures , 1991 .

[94]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[95]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[96]  D. Linden Handbook Of Batteries , 2001 .

[97]  T. R. Crompton Battery Reference Book , 1990 .

[98]  M. Broussely,et al.  Aging mechanism in Li ion cells and calendar life predictions , 2001 .

[99]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[100]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[101]  Venkat R. Subramanian,et al.  Towards "Real-Time" Simulation of Physics Based Lithium Ion Battery Models , 2007 .

[102]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[103]  P. Schleyer,et al.  Lithium chemistry : a theoretical and experimental overview , 1995 .

[104]  Sabu Thomas,et al.  Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries , 2011 .

[105]  Nigel P. Brandon,et al.  Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries , 2014 .

[106]  Yongku Kang,et al.  Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries , 2001 .

[107]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[108]  Sébastien Martinet,et al.  Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity , 2009 .

[109]  Dean Patterson,et al.  Use of lithium-ion batteries in electric vehicles , 2000 .

[110]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[111]  Henry Kelly,et al.  Renewable energy : sources for fuels and electricity , 1993 .

[112]  Jianling Li,et al.  PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries , 2008 .

[113]  Two-Dimensional Lithium-Ion Battery Modeling with Electrolyte and Cathode Extensions , 2012 .

[114]  Ralph E. White,et al.  Analytical Expression for the Impedance Response for a Lithium-Ion Cell , 2008 .

[115]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[116]  N. Yusof,et al.  Prediction of the lithium-ion cell performance via concentration profile simulation , 2012, 2012 International Conference on Green and Ubiquitous Technology.

[117]  Gaurav Jain,et al.  Material and Design Options for Avoiding Lithium Plating during Charging , 2010 .

[118]  S. Dou,et al.  Nanosize cobalt oxides as anode materials for lithium-ion batteries , 2002 .

[119]  H Kiehne,et al.  Battery Technology Handbook , 1989 .

[120]  G. Pistoia,et al.  Batteries for Portable Devices , 2005 .

[121]  Pierre Millet,et al.  Preparation of solid polymer electrolyte composites: investigation of the precipitation process , 1995 .

[122]  W. Chiu,et al.  Microstructural Effects on Electronic Charge Transfer in Li-Ion Battery Cathodes , 2012 .

[123]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[124]  Computer simulation of operation of lithium-ion battery: Galvanostatics, central problem of theory, calculation of characteristics of thin active layers with low diffusion coefficients , 2011 .

[125]  Robert Kostecki,et al.  Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles , 2001 .

[126]  Robert Mabro Oil in the 21st century : issues, challenges and opportunities , 2006 .