Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction

Measurement of multiple Andreev reflection (MAR) in a Josephson junction made from an InAs heterostructure with epitaxial aluminum is used to quantify the highly transparent semiconductor-superconductor interface, indicating near-unity transmission. The observed temperature dependence of MAR does not follow a conventional BCS form, but instead agrees with a model in which the density of states in the quantum well acquires an effective induced gap, in our case 180 {\mu}eV, close to that of the epitaxial superconductor. Carrier density dependence of MAR is investigated using a depletion gate, revealing the subband structure of the semiconductor quantum well, consistent with magnetotransport experiment of the bare InAs performed on the same wafer.

[1]  S. Das Sarma,et al.  Soft superconducting gap in semiconductor Majorana nanowires. , 2012, Physical review letters.

[2]  C. Marcus,et al.  Hard gap in epitaxial semiconductor-superconductor nanowires. , 2014, Nature nanotechnology.

[3]  Takayanagi,et al.  Observation of maximum supercurrent quantization in a superconducting quantum point contact. , 1995, Physical review letters.

[4]  P. Delsing,et al.  Correlated quantization of supercurrent and conductance in a superconducting quantum point contact , 2005 .

[5]  M. Kupriyanov,et al.  Quasiparticle current in ballistic NcN′S junctions , 1995 .

[6]  C. Marcus,et al.  Semiconductor-Nanowire-Based Superconducting Qubit. , 2015, Physical review letters.

[7]  A. Yacoby,et al.  Spatially resolved edge currents and guided-wave electronic states in graphene , 2015, Nature Physics.

[8]  T. Matsuyama,et al.  EVIDENCE FOR A PROXIMITY-INDUCED ENERGY GAP IN NB/INAS/NB JUNCTIONS , 1997 .

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  C. Marcus,et al.  Gatemon Benchmarking and Two-Qubit Operations. , 2015, Physical review letters.

[12]  Rudra,et al.  Experimental indication for supercurrents carried by opened transport channels. , 1996, Physical review. B, Condensed matter.

[13]  L. DiCarlo,et al.  Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements. , 2015, Physical review letters.

[14]  W. Marsden I and J , 2012 .

[15]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[16]  Averin,et al.  ac Josephson Effect in a Single Quantum Channel. , 1995, Physical review letters.

[17]  Nguyen,et al.  Anomalous Andreev conductance in InAs-AlSb quantum well structures with Nb electrodes. , 1992, Physical review letters.

[18]  E. Linfield,et al.  Josephson Current in Nb/InAs/Nb Highly Transmissive Ballistic Junctions , 2004 .

[19]  C. Marcus,et al.  Epitaxy of semiconductor-superconductor nanowires. , 2014, Nature materials.

[20]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[21]  V. Shumeiko,et al.  Multiple Andreev reflection in single atom niobium junctions , 1999, cond-mat/9908223.

[22]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[23]  Ge/Si nanowire mesoscopic Josephson junctions , 2006, Nature nanotechnology.

[24]  A. Volkov,et al.  On the excess current in microbridges S-c-S and S-c-N , 1979 .

[25]  Takayanagi,et al.  Mesoscopic fluctuations of the critical current in a superconductor-normal-conductor-superconductor. , 1995, Physical review letters.

[26]  G. Biasiol,et al.  Electrostatic tailoring of magnetic interference in quantum point contact ballistic Josephson junctions , 2013, 1302.0737.

[27]  Martin Leijnse,et al.  Quantum information transfer between topological and spin qubit systems. , 2011, Physical review letters.

[28]  C. Beenakker,et al.  Universal limit of critical-current fluctuations in mesoscopic Josephson junctions. , 1991, Physical review letters.

[29]  Arai,et al.  Transport properties in an InAs-inserted-channel In0.52Al0.48As/In0.53Ga0.47As heterostructure coupled superconducting junction. , 1992, Physical review. B, Condensed matter.

[30]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[31]  A. Ferguson,et al.  Energy gap measurement of nanostructured aluminium thin films for single Cooper-pair devices , 2007, 0706.4150.

[32]  M. Willander,et al.  Theory of magneto-oscillation effects in quasi-two-dimensional semiconductor structures , 2001 .

[33]  Michael Hell,et al.  Two-Dimensional Platform for Networks of Majorana Bound States. , 2016, Physical review letters.

[34]  C. J. Palmstrøm,et al.  Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure , 2016, Nature Communications.

[35]  L. B. Wang,et al.  Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions , 2016, Scientific Reports.

[36]  R. Meservey,et al.  Properties of Very Thin Aluminum Films , 1971 .

[37]  T. Jackson,et al.  Crossover from tunneling to metallic behavior in superconductor-semiconductor contacts , 1990 .

[38]  T. M. Klapwijk,et al.  Subharmonic energy-gap structure in superconducting constrictions , 1983 .

[39]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[40]  T. Schäpers Superconductor/Semiconductor Junctions , 2001 .

[41]  Golubov,et al.  Quasiparticle current in ballistic constrictions with finite transparencies of interfaces. , 1996, Physical review. B, Condensed matter.

[42]  S. Sarma,et al.  Effects of large induced superconducting gap on semiconductor Majorana nanowires , 2015, 1505.01482.