An information-theoretic analysis of quantum-dot cellular automata for defect tolerance

Quantum-dot cellular automata (QCA) has been advocated as a promising emerging nanotechnology for designing future nanocomputing systems. However, at device level, the large number of expected defects represents a significant hurdle for reliable computation in QCA-based systems. In this paper, we present an information-theoretic approach to investigate the relationship between defect tolerance and redundancy in QCA devices. By modeling defect-prone QCA devices as unreliable information processing media, we determine the information transfer capacity, as bound on the reliability that QCA devices can achieve. The proposed method allows to evaluate the effectiveness of redundancy-based defect tolerance in an effective and quantitative manner.

[1]  Naresh R. Shanbhag,et al.  Energy-efficiency bounds for deep submicron VLSI systems in the presence of noise , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[2]  David A. Ritchie,et al.  Realization of quantum-dot cellular automata using semiconductor quantum dots , 2003 .

[3]  T. J. Dysart,et al.  Defect Properties and Design Tools for Quantum Dot Cellular Automata , 2005 .

[4]  M. Lieberman,et al.  Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices , 2004, IEEE Transactions on Nanotechnology.

[5]  Michael T. Niemier,et al.  Logic in wire: using quantum dots to implement a microprocessor , 1999, Proceedings Ninth Great Lakes Symposium on VLSI.

[6]  Michael Niemier,et al.  DESIGNING DIGITAL SYSTEMS IN QUANTUM CELLULAR AUTOMATA , 2000 .

[7]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[8]  Michael T. Niemier,et al.  Using CAD to shape experiments in molecular QCA , 2006, ICCAD.

[9]  Jing Huang,et al.  Defect characterization and tolerance of QCA sequential devices and circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[10]  Mitra Dutta,et al.  Quantum-based electronic devices and systems , 1998 .

[11]  S. Bhanja,et al.  Probabilistic Modeling of QCA Circuits Using Bayesian Networks , 2006, IEEE Transactions on Nanotechnology.

[12]  P. Kogge,et al.  Memory in Motion : A Study of Storage Structures in QCA , 2002 .

[13]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[14]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[15]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[16]  Jing Huang,et al.  Defect Tolerance of QCA Tiles , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[17]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[18]  Jieying Jiao,et al.  Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. , 2003, Journal of the American Chemical Society.

[19]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[20]  Lei Wang,et al.  Analysis of Defect Tolerance in Molecular Crossbar Electronics , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[21]  F. Jain,et al.  A Quantitative Approach for Analysis of Defect Tolerance in QCA , 2008, 2008 8th IEEE Conference on Nanotechnology.

[22]  C. Lent,et al.  Demonstration of a functional quantum-dot cellular automata cell , 1998 .

[23]  Saket Srivastava,et al.  Hierarchical Probabilistic Macromodeling for QCA Circuits , 2007, IEEE Transactions on Computers.

[24]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[25]  Graham A. Jullien,et al.  Simulation of random cell displacements in QCA , 2007, JETC.

[26]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[27]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[28]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[29]  Mehdi Baradaran Tahoori,et al.  Defects and faults in quantum cellular automata at nano scale , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[30]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[31]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[32]  Jing Huang,et al.  On the Tolerance to Manufacturing Defects in Molecular QCA Tiles for Processing-by-wire , 2007, J. Electron. Test..

[33]  Rainer Wawer,et al.  Quantum Networks: Dynamics of Open Nanostructures , 1998, VLSI Design.

[34]  Fabrizio Lombardi,et al.  QCA memory with parallel read/serial write: design and analysis , 2006 .

[35]  Sanjukta Bhanja,et al.  Novel designs for thermally robust coplanar crossing in QCA , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[36]  A. Orailoglu,et al.  Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[37]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[38]  Amir Fijany,et al.  New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates , 2001 .

[39]  Peter M. Kogge,et al.  Probabilistic Analysis of a Molecular Quantum-Dot Cellular Automata Adder , 2007, 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007).

[40]  Fabrizio Lombardi,et al.  Tile-based design of a serial memory in QCA , 2005, GLSVLSI '05.

[41]  Mo Liu Robustness and power dissipation in quantum-dot cellular automata , 2006 .