Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD

[1]  V. Knop,et al.  Modelling and speciation of nitrogen oxides in engines , 2013 .

[2]  M. Aigner,et al.  Soot predictions in premixed and non-premixed laminar flames using a sectional approach for PAHs and soot , 2012 .

[3]  O. Colin,et al.  NO Relaxation Approach (NORA) to predict thermal NO in combustion chambers , 2011 .

[4]  C. Angelberger,et al.  On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques , 2010 .

[5]  D. Veynante,et al.  Comparison of Differing Formulations of the PCM Model by their Application to the Simulation of an Auto-igniting H2/air Jet , 2009 .

[6]  D. Veynante,et al.  Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane–air jet flame , 2009 .

[7]  J. Bohbot,et al.  IFP-C3D: an Unstructured Parallel Solver for Reactive Compressible Gas Flow with Spray , 2009 .

[8]  F. Le Berr,et al.  Modelling Turbocharged Spark-Ignition Engines: Towards Predictive Real Time Simulators , 2009 .

[9]  F. Battin‐Leclerc,et al.  Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate , 2009, 0903.3707.

[10]  Christian Hasse,et al.  An extended flamelet model for multiple injections in DI Diesel engines , 2009 .

[11]  F. Le Berr,et al.  Powertrain Simulation Tools and Application to the Development of a SI Engine Concept Car , 2008 .

[12]  Christian Hasse,et al.  Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of RepresentativeInteractive Flamelets (RIF) , 2008 .

[13]  Olivier Colin,et al.  Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry , 2008 .

[14]  R. Tatschl,et al.  DoE Based CFD Analysis of Diesel Combustion and Pollutant Formation , 2007 .

[15]  R. Tatschl,et al.  3D-CFD Modeling of Conventional and Alternative Diesel Combustion and Pollutant Formation - A Validation Study , 2007 .

[16]  Nasser Darabiha,et al.  Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames , 2006 .

[17]  Rolf D. Reitz,et al.  Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine , 2006 .

[18]  Konstantinos Boulouchos,et al.  Simulations of spray autoignition and flame establishment with two-dimensional CMC , 2005 .

[19]  Robert W. Dibble,et al.  Lifted methane–air jet flames in a vitiated coflow , 2005 .

[20]  Olivier Colin,et al.  Detailed chemistry-based auto-ignition model including low temperature phenomena applied to 3-D engine calculations , 2005 .

[21]  A. Benkenida,et al.  The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion , 2004 .

[22]  J. Roesler,et al.  Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion , 2001 .

[23]  Nasser Darabiha,et al.  Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion , 2000 .

[24]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[25]  Thierry Baritaud,et al.  MODELING ATOMIZATION AND BREAK UP IN HIGH-PRESSURE DIESEL SPRAYS , 1997 .

[26]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .