How indefinites choose their scope

The paper proposes a novel solution to the problem of scope posed by natural language indefinites that captures both the difference in scopal freedom between indefinites and bona fide quantifiers and the syntactic sensitivity that the scope of indefinites does nevertheless exhibit. Following the main insight of choice functional approaches, we connect the special scopal properties of indefinites to the fact that their semantics can be stated in terms of choosing a suitable witness. This is in contrast to bona fide quantifiers, the semantics of which crucially involves relations between sets of entities. We provide empirical arguments that this insight should not be captured by adding choice/Skolem functions to classical first-order logic, but in a semantics that follows Independence-Friendly Logic, in which scopal relations involving existentials are part of the recursive definition of truth and satisfaction. These scopal relations are resolved automatically as part of the interpretation of existentials. Additional support for this approach is provided by dependent indefinites, a cross-linguistically common class of special indefinites that can be straightforwardly analyzed in our semantic framework.

[1]  D. Abusch The scope of indefinites , 1993 .

[2]  Yoad Winter,et al.  Distributivity and Dependency , 2000 .

[3]  B. Geurts Indefinites and Choice Functions , 2000, Linguistic Inquiry.

[4]  Itamar Francez,et al.  Existentials, predication, and modification , 2009 .

[5]  Christoph Schwarze,et al.  Meaning, Use, and Interpretation of Language , 1983 .

[6]  Adrian Brasoveanu,et al.  STRUCTURED NOMINAL AND MODAL REFERENCE , 2008 .

[7]  Theo M. V. Janssen,et al.  Independent Choices and the Interpretation of IF Logic , 2002, J. Log. Lang. Inf..

[8]  R. Muskens Meaning and Partiality , 1995 .

[9]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[10]  Donka F. Farkas,et al.  Varieties of Indefinites , 2002 .

[11]  Adrian Brasoveanu,et al.  Donkey pluralities: plural information states versus non-atomic individuals , 2008 .

[12]  Jaakko Hintikka,et al.  Logic, Language-Games And Information , 1972 .

[13]  Lisa Matthewson,et al.  On The Interpretation of Wide-scope Indefinites , 1998 .

[14]  Gosse Bouma,et al.  Empirical issues in formal syntax and semantics , 1999 .

[15]  P. Schlenker Non-Redundancy: Towards a Semantic Reinterpretation of Binding Theory , 2005 .

[16]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[17]  Gabriel Sandu,et al.  On the logic of informational independence and its applications , 1993, J. Philos. Log..

[18]  Rick Nouwen,et al.  Plural pronominal anaphora in context , 2003 .

[19]  Donka F. Farkas,et al.  Quantifier Scope and Syntactic Islands , 1981 .

[20]  A. Kratzer Scope or Pseudoscope? Are there Wide-Scope Indefinites? , 1998 .

[21]  Cornelia Endriss Quantificational Topics: A Scopal Treatment of Exceptional Wide Scope Phenomena , 2010 .

[22]  Paul Dekker,et al.  A multi-dimensional treatment of quantification in extraordinary English , 2008 .

[23]  Adrian Brasoveanu,et al.  Decomposing Modal Quantification , 2010, J. Semant..

[24]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[25]  Xavier Caicedo,et al.  Equivalence and quantifier rules for logic with imperfect information , 2009, Log. J. IGPL.

[26]  Angelika Kratzer A Note on Choice Functions in Context , 2003 .

[27]  T. Reinhart Quantifier Scope: How labor is Divided Between QR and Choice Functions , 1997 .

[28]  Carlo Cecchetto,et al.  Semantic Interfaces: Reference, Anaphora, and Aspect , 2001 .

[29]  Godehard Link The Logical Analysis of Plurals and Mass Terms: A Lattice‐theoretical Approach , 2008 .

[30]  Y. Winter,et al.  Choice Functions and the Scopal Semantics of Indefinites , 1997 .

[31]  Reinhard Muskens,et al.  Combining Montague semantics and discourse representation , 1996 .

[32]  Ivan A. Sag,et al.  Referential and quantificational indefinites , 1982 .

[33]  E. G. Ruys,et al.  The scope of indefinites , 1992 .

[34]  Bernhard Schwarz,et al.  Two kinds of long-distance indefinites , 2001 .

[35]  Donka F. Farkas,et al.  Evaluation Indices and Scope , 1997 .

[36]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[37]  Anna Szabolcsi Ways of Scope Taking , 1997 .

[38]  Kai-Uwe Von Fintel,et al.  Restrictions on quantifier domains , 1994 .

[39]  Philippe Schlenker Scopal Independence: A Note on Branching and Wide Scope Readings of Indefinites and Disjunctions , 2006, J. Semant..

[40]  P. Dekker Predicate logic with anaphora , 1994 .

[41]  Bart Geurts,et al.  Specific indefinites, presupposition, and scope , 2010 .

[42]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[43]  Cleo Condoravdi,et al.  Logical Perspectives on Language and Information , 2001 .

[44]  T. M. V. Janssen,et al.  Foundations and applications of Montague grammar , 1986 .

[45]  Maria Bittner,et al.  Word Order and Incremental Update , 2003 .

[46]  Donka F. Farkas Free choice in Romanian , 2006 .

[47]  K. Turner,et al.  Where semantics meets pragmatics , 2006 .