Terra quantum at MIPT-QUANT 2020

Implementations of quantum information-processing systems require quantum algorithms and corresponding material tools to solve problems posited by modern information technologies. Terra Quantum offers state-of-the-art solutions that pave the way to a new level of efficiency in information processing. In this paper, we outline the research activities carried out by Terra Quantum experts who focus on quantum computing and quantum machine learning, sensors and metrology, quantum cryptography, random number generators, and algorithmic cooling.

[1]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[2]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[3]  E. Il'ichev,et al.  Flux qubit as a sensor for a magnetometer with quantum limited sensitivity , 2006, cond-mat/0608416.

[4]  G. B. Lesovik,et al.  Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom , 2018, npj Quantum Information.

[5]  Raymond Laflamme,et al.  Heat Bath Algorithmic Cooling with Spins: Review and Prospects , 2016 .

[6]  Hartmut Neven,et al.  QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization , 2012, ACML.

[7]  Phase estimation algorithm for the multibeam optical metrology , 2018, Scientific Reports.

[8]  G. B. Lesovik,et al.  Quantum metrology with a transmon qutrit , 2017, 1711.06172.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[11]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[12]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[13]  Kai Chen,et al.  Metropolitan all-pass and inter-city quantum communication network. , 2010, Optics express.

[14]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[15]  L. Duan,et al.  Heisenberg-limited single-mode quantum metrology in a superconducting circuit , 2019, Nature Communications.

[16]  Kai Chen,et al.  Field test of a practical secure communication network with decoy-state quantum cryptography. , 2008, Optics express.

[17]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[18]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[19]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[20]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[22]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  E. Il'ichev,et al.  Flux qubit as a sensor of magnetic flux , 2007 .

[24]  Geoff J. Pryde,et al.  Practical Quantum Metrology , 2013, 1307.4673.

[25]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[26]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[27]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[28]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[29]  Easwar Magesan,et al.  Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout. , 2014, Physical review letters.

[30]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[31]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[32]  Peter P. Rohde,et al.  The resurgence of the linear optics quantum interferometer — recent advances & applications , 2018, Reviews in Physics.

[33]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[34]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[35]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[36]  Kaushik P. Seshadreesan,et al.  Quantum Optical Technologies for Metrology, Sensing, and Imaging , 2014, Journal of Lightwave Technology.

[37]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[38]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[39]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[40]  P. Hakonen,et al.  Broadband lumped-element Josephson parametric amplifier with single-step lithography , 2018, Applied Physics Letters.

[41]  Jeremy L O'Brien,et al.  Towards practical quantum metrology with photon counting , 2016, npj Quantum Information.

[42]  J. F. Dynes,et al.  Cambridge quantum network , 2019, npj Quantum Information.

[43]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[44]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.