Ceramic waste form process for immobilizing iodine in glass-bonded iodosodalite

....................................................................................................................................................... iii Acknowledgments ......................................................................................................................................... v Acronyms and Abbreviations ..................................................................................................................... vii 1.0 Introduction ....................................................................................................................................... 1.1 2.0 Experimental Methods ....................................................................................................................... 2.1 2.1 Glass binder fabrication ............................................................................................................ 2.1 2.2 ACWF fabrication ..................................................................................................................... 2.1 2.3 Powder X-ray diffraction .......................................................................................................... 2.2 2.4 Scanning electron microscopy and energy dispersive spectroscopy ......................................... 2.2 2.5 Density and porosity.................................................................................................................. 2.2 2.5.1 Pycnometry..................................................................................................................... 2.2 2.5.2 Archimedes’ technique ................................................................................................... 2.2 3.0 Results ............................................................................................................................................... 3.1 3.1 Microstructure and chemistry (SEM-EDS) ............................................................................... 3.1 3.2 Phase distribution (P-XRD) ...................................................................................................... 3.3 3.3 Porosity and density .................................................................................................................. 3.5 4.0 Discussion .......................................................................................................................................... 4.1 5.0 Summary and Conclusions ................................................................................................................ 5.1 6.0 References ......................................................................................................................................... 6.1

[1]  L. Kovarik,et al.  Silver-functionalized silica aerogel: towards an understanding of aging on iodine sorption performance , 2018, RSC advances.

[2]  J. Mcfarlane,et al.  Identification of Potential Waste Processing and Waste Form Options for Molten Salt Reactors , 2018 .

[3]  W. Duan,et al.  Au/AgI Dimeric Nanoparticles for Highly Selective and Sensitive Colorimetric Detection of Hydrogen Sulfide , 2018 .

[4]  Xiaohong Li,et al.  Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents. , 2017, ACS applied materials & interfaces.

[5]  J. Mauro,et al.  Wet chemical synthesis of apatite-based waste forms – A novel room temperature method for the immobilization of radioactive iodine , 2017 .

[6]  J. Crum,et al.  Glass binder development for a glass-bonded sodalite ceramic waste form , 2017 .

[7]  B. Riley,et al.  Synthesis and characterization of iodosodalite , 2017 .

[8]  S. Bruffey,et al.  Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing , 2017 .

[9]  James L. Jerden,et al.  Materials and processes for the effective capture and immobilization of radioiodine: A review , 2016 .

[10]  E. Maddrell,et al.  Capture of iodine from the vapour phase and immobilisation as sodalite , 2015 .

[11]  Weijian Zhou,et al.  Accelerator Mass Spectrometry Analysis of Ultra-Low-Level 129I in Carrier-Free AgI-AgCl Sputter Targets , 2015, Journal of The American Society for Mass Spectrometry.

[12]  T. Nenoff,et al.  Low Temperature Glass Composite Material (GCM) Waste Form for Radiological Iodine Captured by Ag-Zeolites: Optimization and Durability. , 2015 .

[13]  S. Bruffey,et al.  Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite , 2014 .

[14]  M. Stennett,et al.  The durability of iodide sodalite , 2014 .

[15]  Jang-Jin Park,et al.  Waste Form of Silver Iodide (AgI) with Low-Temperature Sintering Glasses , 2014 .

[16]  Brian J. Riley,et al.  Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts , 2013 .

[17]  G. Fryxell,et al.  The Effect of Temperature and Uniaxial Pressure on the Densification Behavior of Silica Aerogel Granules , 2012 .

[18]  A. Grandjean,et al.  Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine , 2011 .

[19]  P. Hrma Retention of Halogens in Waste Glass , 2010 .

[20]  Stephen Priebe,et al.  The Ceramic Waste Form Process at Idaho National Laboratory , 2006 .

[21]  Neil C. Hyatt,et al.  Silver Zeolites: Iodide Occlusion and conversion to Sodalite – a potential 129 I waste form? , 2006 .

[22]  J. Hanson,et al.  Covalent Guest—Framework Interactions in Heavy Metal Sodalites: Structure and Properties of Thallium and Silver Sodalite. , 1999 .

[23]  K. M. Goff,et al.  Characterization of a Ceramic Waste Form Encapsulating Radioactive Electrorefiner Salt , 1999 .

[24]  S. McDeavitt,et al.  Isolating wastes in the electrometallurgical treatment of spent nuclear fuel , 1997 .

[25]  Lewis,et al.  Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West , 1996 .

[26]  P. Behrens,et al.  The Structures of Anhydrous Silver Sodalite Ag3[Al3Si3O12] at 298, 623, and 723 K from Rietveld Refinements of X-Ray Powder Diffraction Data: Mechanism of Thermal Expansion and of the Phase Transition at 678 K , 1995 .

[27]  Gordon,et al.  Crystal-structure calculations with distorted ions. , 1993, Physical review. B, Condensed matter.

[28]  G. Stucky,et al.  Silver, sodium halosodalites: class A sodalites , 1992 .

[29]  N. Nielsen,et al.  7Li, 23Na, and 27Al quadrupolar interactions in some aluminosilicate sodalites from MAS n.m.r. spectra of satellite transitions , 1991 .

[30]  M. Weller,et al.  Mixed halide sodalites , 1989 .

[31]  G. Vandegrift,et al.  Compatibility of Technologies with Regulations in the Waste Management of H-3, I-129, C-14, and Kr-85: Part 2, Analysis , 1983 .

[32]  G. Vandegrift,et al.  Compatibility of Technologies with Regulations in the Waste Management of H-3, I-129, C-14, and Kr-85: Part 1, Initial Information Base , 1983 .

[33]  D. Taylor,et al.  The crystal structures of aluminosilicate-sodalites: X-ray diffraction studies and computer modelling , 1982, Mineralogical Magazine.

[34]  D. Strachan,et al.  Iodide and iodate sodalites for the long-term storage of iodine-129 , 1979 .

[35]  D. W. Holladay Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents , 1979 .