Interference in Large Wireless Networks

Since interference is the main performance-limiting factor in most wireless networks, it is crucial to characterize the interference statistics. The two main determinants of the interference are the network geometry (spatial distribution of concurrently transmitting nodes) and the path loss law (signal attenuation with distance). For certain classes of node distributions, most notably Poisson point processes, and attenuation laws, closed-form results are available, for both the interference itself as well as the signal-to-interference ratios, which determine the network performance. This monograph presents an overview of these results and gives an introduction to the analytical techniques used in their derivation. The node distribution models range from lattices to homogeneous and clustered Poisson models to general motion-invariant ones. The analysis of the more general models requires the use of Palm theory, in particular conditional probability generating functionals, which are briefly introduced in the appendix.

[1]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[2]  Jeffrey G. Andrews,et al.  Transmission Capacity of Wireless Ad Hoc Networks With Successive Interference Cancellation , 2007, IEEE Transactions on Information Theory.

[3]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[4]  J. Mecke,et al.  Eine charakteristische Eigenschaft der doppelt stochastischen Poissonschen Prozesse , 1968 .

[5]  Xiangying Yang,et al.  Inducing multiscale clustering using multistage MAC contention in CDMA ad hoc networks , 2007, TNET.

[6]  Rudolf Mathar,et al.  On the distribution of cumulated interference power in Rayleigh fading channels , 1995, Wirel. Networks.

[7]  Martin Haenggi,et al.  Interference in ad hoc networks with general motion-invariant node distributions , 2008, 2008 IEEE International Symposium on Information Theory.

[8]  M. Westcott The probability generating functional , 1972, Journal of the Australian Mathematical Society.

[9]  Jean-Paul M. G. Linnartz,et al.  Exact analysis of the outage probability in multiple-user mobile radio , 1992, IEEE Trans. Commun..

[10]  James R. Zeidler,et al.  A delay-minimizing routing strategy for wireless multi-hop networks , 2009, 2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks.

[11]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[12]  Khairi Ashour Hamdi Exact probability of error of BPSK communication links subjected to asynchronous interference in Rayleigh fading environment , 2002, IEEE Trans. Commun..

[13]  Leonard Kleinrock,et al.  Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals , 1984, IEEE Trans. Commun..

[14]  I. Zucker,et al.  Exact results for some lattice sums in 2, 4, 6 and 8 dimensions , 1974 .

[15]  H. Vincent Poor,et al.  On unbounded path-loss models: effects of singularity on wireless network performance , 2009, IEEE Journal on Selected Areas in Communications.

[16]  Kenji Nakagawa,et al.  Application of Tauberian Theorem to the Exponential Decay of the Tail Probability of a Random Variable , 2006, IEEE Transactions on Information Theory.

[17]  Jeffrey G. Andrews,et al.  Ad Hoc Networks: To Spread or Not to Spread? [Ad Hoc and Sensor Networks] , 2007, IEEE Communications Magazine.

[18]  Martin Haenggi A Geometric Interpretation of Fading in Wireless Networks: Theory and Applications , 2008, IEEE Transactions on Information Theory.

[19]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[20]  Patrick Thiran,et al.  Connectivity vs capacity in dense ad hoc networks , 2004, IEEE INFOCOM 2004.

[21]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[22]  Jeffrey G. Andrews,et al.  Fractional power control for decentralized wireless networks , 2007, IEEE Transactions on Wireless Communications.

[23]  Samuel Kotz,et al.  ON THE PRODUCT AND RATIO OF GAMMA AND WEIBULL RANDOM VARIABLES , 2006, Econometric Theory.

[24]  François Baccelli,et al.  An Aloha protocol for multihop mobile wireless networks , 2006, IEEE Transactions on Information Theory.

[25]  Jeffrey G. Andrews,et al.  Transmission capacity of wireless ad hoc networks with outage constraints , 2005, IEEE Transactions on Information Theory.

[26]  Martin Haenggi,et al.  Spatial and temporal correlation of the interference in ALOHA ad hoc networks , 2009, IEEE Communications Letters.

[27]  Jeffrey G. Andrews,et al.  The Effect of Fading, Channel Inversion, and Threshold Scheduling on Ad Hoc Networks , 2007, IEEE Transactions on Information Theory.

[28]  Jens C. Arnbak,et al.  Capacity of Slotted ALOHA in Rayleigh-Fading Channels , 1987, IEEE J. Sel. Areas Commun..

[29]  S. Rice Mathematical analysis of random noise , 1944 .

[30]  François Baccelli,et al.  Stochastic analysis of spatial and opportunistic aloha , 2009, IEEE Journal on Selected Areas in Communications.

[31]  Martin Haenggi,et al.  Outage, local throughput, and capacity of random wireless networks , 2008, IEEE Transactions on Wireless Communications.

[32]  M. Meerschaert Regular Variation in R k , 1988 .

[33]  Andrew J. Viterbi,et al.  Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels , 1990, IEEE J. Sel. Areas Commun..

[34]  Biswanath Mukherjee,et al.  Upcoming Issues of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS , 2004 .

[35]  François Baccelli,et al.  A Stochastic Geometry Analysis of Dense IEEE 802.11 Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[36]  A. Gut Probability: A Graduate Course , 2005 .

[37]  K. Hanisch Reduction of n-th moment measures and the special case of the third moment measure of stationary and isotropic planar point processes , 1983 .

[38]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[39]  Gerhard Kramer,et al.  A New Outer Bound and the Noisy-Interference Sum–Rate Capacity for Gaussian Interference Channels , 2007, IEEE Transactions on Information Theory.

[40]  Dimitrios Hatzinakos,et al.  Analytic alpha-stable noise modeling in a Poisson field of interferers or scatterers , 1998, IEEE Trans. Signal Process..

[41]  Esko Valkeila,et al.  An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, 2nd Edition by Daryl J. Daley, David Vere‐Jones , 2008 .

[42]  Martin Haenggi,et al.  On distances in uniformly random networks , 2005, IEEE Transactions on Information Theory.

[43]  Jack M. Holtzman,et al.  Analysis of a simple successive interference cancellation scheme in a DS/CDMA system , 1994, IEEE J. Sel. Areas Commun..

[44]  Malvin Carl Teich,et al.  Power-law shot noise , 1990, IEEE Trans. Inf. Theory.

[45]  Jehoshua Bruck,et al.  A random walk model of wave propagation , 2004, IEEE Transactions on Antennas and Propagation.

[46]  Martin Haenggi,et al.  Interference and Outage in Clustered Wireless Ad Hoc Networks , 2007, IEEE Transactions on Information Theory.

[47]  Michele Zorzi,et al.  Optimum transmission ranges in multihop packet radio networks in the presence of fading , 1995, IEEE Trans. Commun..

[48]  Jeffrey G. Andrews,et al.  The Guard Zone in Wireless Ad hoc Networks , 2007, IEEE Transactions on Wireless Communications.

[49]  John A. Silvester,et al.  Optimum Transmission Ranges in a Direct-Sequence Spread-Spectrum Multihop Packet Radio Network , 1990, IEEE J. Sel. Areas Commun..

[50]  Jeffrey G. Andrews,et al.  Ad Hoc Networks: To Spread or Not to Spread? , 2007 .

[51]  H. Pollak,et al.  Amplitude distribution of shot noise , 1960 .

[52]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[53]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[54]  V. Schmidt,et al.  NORMAL CONVERGENCE OF MULTIDIMENSIONAL SHOT NOISE AND RATES OF THIS CONVERGENCE , 1985 .

[55]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .