Parallel computation of the rank of large sparse matrices from algebraic K-theory

This paper deals with the computation of the rank and some integer Smith forms of a series of sparse matrices arising in algebraic K-theory. The number of non zero entries in the considered matrices ranges from 8 to 37 millions. The largest rank computation took more than 35 days on 50 processors. We report on the actual algorithms we used to build the matrices, their link to the motivic cohomology and the linear algebra and parallelizations required to perform such huge computations. In particular, these results are part of the first computation of the cohomology of the linear group GL 7(Z).

[1]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[2]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[3]  坂上 貴之 書評 Computational Homology , 2005 .

[4]  Philippe Elbaz-Vincent,et al.  Quelques calculs de la cohomologie de ? et de la K-théorie de ?Some computations of the homology of ? and the K-theory of ? , 2002 .

[5]  Emmanuel Thomé,et al.  Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..

[6]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[7]  J. Rosenberg,et al.  Algebraic K-Theory and Its Applications , 1995 .

[8]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[9]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[10]  C. Thomas,et al.  COHOMOLOGY OF GROUPS (Graduate Texts in Mathematics, 87) , 1984 .

[11]  Gilles Villard,et al.  Solving sparse rational linear systems , 2006, ISSAC '06.

[12]  Numerische Mathematik Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .

[13]  Masato Kurihara Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$ , 1992 .

[14]  William J. Turner,et al.  A block Wiedemann rank algorithm , 2006, ISSAC '06.

[15]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[16]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[17]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[18]  B. David Saunders,et al.  Smith normal form of dense integer matrices fast algorithms into practice , 2004, ISSAC '04.

[19]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[20]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[21]  Erich Kaltofen,et al.  Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields , 1999, Algorithmica.

[22]  M. Mrozek,et al.  Homology Computation by Reduction of Chain Complexes , 1998 .

[23]  Christophe Soul'e Perfect forms and the Vandiver conjecture , 1998 .

[24]  Jean-Guillaume Dumas,et al.  On Efficient Sparse Integer Matrix Smith Normal Form Computations , 2001, J. Symb. Comput..

[25]  Emmanuel Thomé,et al.  Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.

[26]  R. Ho Algebraic Topology , 2022 .

[27]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[28]  Manuel Bronstein,et al.  Fast deterministic computation of determinants of dense matrices , 1999, ISSAC '99.

[29]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[31]  Barry M. Trager,et al.  Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation , 2006, ISSAC 2006.