A logarithmic approximation for polymatroid congestion games

Abstract We study the problem of computing a social optimum in polymatroid congestion games, where the strategy space of every player consists of a player-specific integral polymatroid base polyhedron on a set of resources. For non-decreasing cost functions we devise an H ρ -approximation algorithm, where ρ is the sum of the ranks of the polymatroids and H ρ denotes the ρ -th harmonic number. The approximation guarantee is best possible up to a constant factor and solves an open problem of Ackermann et al. (2008).

[1]  William H Cunningham,et al.  Improved Bounds for Matroid Partition and Intersection Algorithms , 1986, SIAM J. Comput..

[2]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[3]  Aranyak Mehta,et al.  Fairness and optimality in congestion games , 2005, EC '05.

[4]  Tobias Harks,et al.  Optimal Cost Sharing for Resource Selection Games , 2013, Math. Oper. Res..

[5]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[6]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[7]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[8]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[9]  Martin Hoefer,et al.  Computing pure Nash and strong equilibria in bottleneck congestion games , 2010, ESA.

[10]  Max Klimm,et al.  Resource Competition on Integral Polymatroids , 2014, WINE.

[11]  Berthold Vöcking,et al.  On the Impact of Combinatorial Structure on Congestion Games , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[12]  Spyridon Antonakopoulos,et al.  Minimum-Cost Network Design with (Dis)economies of Scale , 2016, SIAM J. Comput..

[13]  Gerhard J. Woeginger,et al.  How Hard Is It to Find Extreme Nash Equilibria in Network Congestion Games? , 2008, WINE.

[14]  Shahar Dobzinski,et al.  Welfare Maximization in Congestion Games , 2006, IEEE Journal on Selected Areas in Communications.

[15]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[16]  Spyridon Antonakopoulos,et al.  Minimum-Cost Network Design with (Dis)economies of Scale , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Spyridon Antonakopoulos,et al.  Buy-at-Bulk Network Design with Protection , 2011, Math. Oper. Res..

[18]  Laurence A. Wolsey,et al.  An analysis of the greedy algorithm for the submodular set covering problem , 1982, Comb..

[19]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[20]  Tim Roughgarden,et al.  Barriers to Near-Optimal Equilibria , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[21]  Guido Schäfer,et al.  Finding Social Optima in Congestion Games with Positive Externalities , 2012, ESA.

[22]  Renato F. Werneck,et al.  Finding minimum congestion spanning trees , 1999, JEAL.

[23]  Tobias Harks,et al.  Optimal cost sharing for capacitated facility location games , 2014, Eur. J. Oper. Res..

[24]  Berthold Vöcking,et al.  Inapproximability of pure nash equilibria , 2008, STOC.

[25]  Heike Sperber How to find Nash equilibria with extreme total latency in network congestion games? , 2009, 2009 International Conference on Game Theory for Networks.

[26]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[27]  Martin Hoefer,et al.  Computing Pure Nash and Strong Equilibria in Bottleneck Congestion Games , 2010, ESA.

[28]  Harold N. Gabow,et al.  Algorithms for graphic polymatroids and parametric s-Sets , 1995, SODA '95.

[29]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[30]  Yoav Shoham,et al.  Fast and Compact: A Simple Class of Congestion Games , 2005, AAAI.

[31]  Andreas S. Schulz,et al.  The complexity of welfare maximization in congestion games , 2009, Networks.