First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives

The structural, dynamical, and thermodynamic properties of diamond, graphite and layered derivatives (graphene, rhombohedral graphite) are computed using a combination of density-functional theory total-energy calculations and density-functional perturbation theory lattice dynamics in the generalized gradient approximation. Overall, very good agreement is found for the structural properties and phonon dispersions, with the exception of the c/a ratio in graphite and the associated elastic constants and phonon dispersions. Both the C-33 elastic constant and the F to A phonon dispersions are brought to close agreement with available data once the experimental c/a is chosen for the calculations. The vibrational free energy and the thermal expansion, the temperature dependence of the elastic moduli and the specific heat are calculated using the quasiharmonic approximation. Graphite shows a distinctive in-plane negative thermal-expansion coefficient that reaches its lowest value around room temperature, in very good agreement with experiments. Thermal contraction in graphene is found to be three times as large; in both cases, bending acoustic modes are shown to be responsible for the contraction, in a direct manifestation of the membrane effect predicted by Lifshitz over 50 years ago. Stacking directly affects the bending modes, explaining the large numerical difference between the thermal-contraction coefficients in graphite and graphene, notwithstanding their common physical origin.

[1]  Ding-sheng Wang,et al.  Ab initio phonon dispersions of single-wall carbon nanotubes , 2004 .

[2]  Hugh O. Pierson,et al.  Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications , 1993 .

[3]  Contribution of quantum and thermal fluctuations to the elastic moduli and dielectric constants of covalent semiconductors. , 1996, Physical review. B, Condensed matter.

[4]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[5]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[6]  A. K. Ramdas,et al.  Brillouin scattering in diamond , 1975 .

[7]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[8]  Rafael Ramírez,et al.  Structural and thermodynamic properties of diamond: A path-integral Monte Carlo study , 2000 .

[9]  University of Cambridge,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999 .

[10]  Zhao,et al.  X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.

[11]  Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA , 2001, cond-mat/0109020.

[12]  Laurence E. Fried,et al.  Explicit Gibbs free energy equation of state applied to the carbon phase diagram , 2000 .

[13]  R. A. Suleimanov,et al.  On the role played by bending vibrations in heat transfer in layered crystals , 2002 .

[14]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .

[15]  J. Warren,et al.  Lattice Dynamics of Diamond , 1967 .

[16]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[17]  G. V. Chester,et al.  Solid-State Physics , 1962, Nature.

[18]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[19]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[20]  D. Tománek,et al.  Thermal contraction of carbon fullerenes and nanotubes. , 2004, Physical review letters.

[21]  R. Souda,et al.  Surface phonon dispersion curves of graphite (0001) over the entire energy region , 1988 .

[22]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[23]  A. D. Corso,et al.  Phonon dispersions: Performance of the generalized gradient approximation , 1999 .

[24]  P. Ngoepe,et al.  Effects of Local and Gradient-Corrected Density Approximations on the Prediction of the Intralayer Lattice Distance c, in Graphite and LiC6 , 1999 .

[25]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[26]  H. J. Mcskimin,et al.  Elastic Moduli of Diamond as a Function of Pressure and Temperature , 1972 .

[27]  P. Keblinski,et al.  Thermal expansion of carbon structures , 2003 .

[28]  Martin,et al.  Structural and electronic properties of amorphous carbon. , 1989, Physical review letters.

[29]  T. Tanaka,et al.  Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation , 2005 .

[30]  Stefano de Gironcoli,et al.  Ab initio phonon calculations in solids , 1996 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  L. Wirtz,et al.  The phonon dispersion of graphite revisited , 2004, cond-mat/0404637.

[33]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[34]  Jerry Donohue The structures of the elements , 1974 .

[35]  K. Rieder,et al.  Surface phonon dispersion in graphite and in a lanthanum graphite intercalation compound , 1997 .

[36]  S deGironcoli,et al.  Lattice dynamics of metals from density-functional perturbation theory. , 1995 .

[37]  D. Riley,et al.  The thermal expansion of graphite from 15?c. to 800?c.: part I. Experimental , 1945 .

[38]  R. Car,et al.  A microscopic model for surface-induced diamond-to-graphite transitions , 1996, Nature.

[39]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[40]  H. Zabel Phonons in layered compounds , 2001 .

[41]  R. Martin,et al.  APPLICATIONS OF THE GENERALIZED-GRADIENT APPROXIMATION TO ATOMS, CLUSTERS,AND SOLIDS , 1997 .

[42]  Andrew C. Victor,et al.  Heat Capacity of Diamond at High Temperatures , 1962 .

[43]  N. Abdullaev Grüneisen parameters for layered crystals , 2001 .

[44]  R. Lin,et al.  MECHANICAL ALLOYING OF AN IMMISCIBLE ALPHA -FE-2O3-SNO2 CERAMIC , 1997 .

[45]  B. Yates,et al.  Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures , 1970 .

[46]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[47]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[48]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[49]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[50]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[51]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[52]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[53]  J. G. Collins,et al.  Thermal expansion of solids at low temperatures , 1980 .

[54]  Baroni,et al.  Ab initio lattice dynamics of diamond. , 1993, Physical review. B, Condensed matter.

[55]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[56]  Stefano de Gironcoli,et al.  High-pressure thermal expansion, bulk modulus, and phonon structure of diamond , 1999 .

[57]  Car,et al.  Carbon: The nature of the liquid state. , 1989, Physical Review Letters.

[58]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[59]  Martins,et al.  Energetics of interplanar binding in graphite. , 1992, Physical review. B, Condensed matter.

[60]  Eleni Ziambaras,et al.  Theory for structure and bulk modulus determination , 2003, cond-mat/0304075.

[61]  A. Quong,et al.  First-principles calculations of the thermal expansion of metals , 1997 .

[62]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[63]  Dmitrii E. Makarov,et al.  van der Waals Energies in Density Functional Theory , 1998 .

[64]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.