Optrodes for combined optogenetics and electrophysiology in live animals

Abstract. Optical tissue properties limit visible light depth penetration in tissue. Because of this, the recent development of optogenetic tools was quickly followed by the development of light delivery devices for in vivo optogenetics applications. We summarize the efforts made in the last decade to design neural probes that combine conventional electrophysiological recordings and optical channel(s) for optogenetic activation, often referred to as optodes or optrodes. Several aspects including challenges for light delivery in living brain tissue, the combination of light delivery with electrophysiological recordings, probe designs, multimodality, wireless implantable system, and practical considerations guiding the choice of configuration depending on the questions one seeks to address are presented.

[1]  D. J. Harrison,et al.  Bright and fast multi-colored voltage reporters via electrochromic FRET , 2014, Nature Communications.

[2]  Paul W. Sternberg,et al.  Archaerhodopsin Variants with Enhanced Voltage Sensitive Fluorescence in Mammalian and Caenorhabditis elegans Neurons , 2014, Nature Communications.

[3]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[4]  Aleksandra Klimas,et al.  Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective , 2014, Journal of biomedical optics.

[5]  Robert E. Campbell,et al.  pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis , 2014, The Journal of cell biology.

[6]  P. Leleux,et al.  In vivo recordings of brain activity using organic transistors , 2013, Nature Communications.

[7]  Vincent A Pieribone,et al.  A genetically targetable fluorescent probe of channel gating with rapid kinetics. , 2002, Biophysical journal.

[8]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[9]  K. Deisseroth,et al.  Optogenetics , 2013, Proceedings of the National Academy of Sciences.

[10]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[11]  Nina Vogt Neuroscience: All-optical electrophysiology in behaving animals , 2015, Nature Methods.

[12]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[13]  C. McIntyre,et al.  Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. , 2012, Journal of neurophysiology.

[14]  M. Morad,et al.  Ca2(+)-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. , 1990, The American journal of physiology.

[15]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[16]  Christian Griesinger,et al.  Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes , 2014, Nature Methods.

[17]  Xue Han,et al.  In vivo application of optogenetics for neural circuit analysis. , 2012, ACS chemical neuroscience.

[18]  Christina M. Tringides,et al.  Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo , 2015, Nature Biotechnology.

[19]  Jing Wang,et al.  Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications , 2012, Journal of neural engineering.

[20]  Patrick Degenaar,et al.  A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[21]  O. Masseck,et al.  Use of Optogenetic Approaches to Control Intracellular Signaling of G Protein-Coupled Receptors , 2014 .

[22]  Dacheng Wang,et al.  Structural basis of the ultrasensitive calcium indicator GCaMP6 , 2014, Science China Life Sciences.

[23]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[24]  M. Yappert,et al.  Determination of Effective Depth and Equivalent Pathlength for a Single-Fiber Fluorometric Sensor , 1992 .

[25]  E. Isacoff,et al.  Allosteric control of an ionotropic glutamate receptor with an optical switch , 2006, Nature chemical biology.

[26]  Alex Rodriguez,et al.  A wirelessly powered and controlled device for optical neural control of freely-behaving animals , 2011, Journal of neural engineering.

[27]  Euisik Yoon,et al.  Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[28]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[29]  M. Ward,et al.  Toward a comparison of microelectrodes for acute and chronic recordings , 2009, Brain Research.

[30]  B. Smaill,et al.  Illumination and fluorescence collection volumes for fiber optic probes in tissue. , 2007, Journal of biomedical optics.

[31]  G. Buzsáki,et al.  An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications , 2013, Journal of neural engineering.

[32]  Suzie Dufour,et al.  In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode , 2011, Journal of Neuroscience Methods.

[33]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[34]  M. Kühl Optical microsensors for analysis of microbial communities. , 2005, Methods in enzymology.

[35]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[36]  Valter Tucci,et al.  Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex , 2013, Nature Neuroscience.

[37]  Vincent A. Pieribone,et al.  Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe , 2012, Neuron.

[38]  J. Kaplan Sodium pump-mediated ATP:ADP exchange. The sided effects of sodium and potassium ions , 1982, The Journal of general physiology.

[39]  D. Tank,et al.  Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields , 2014, Nature Neuroscience.

[40]  Walther Akemann,et al.  Optogenetic monitoring of membrane potentials , 2011, Experimental physiology.

[41]  T. Knöpfel,et al.  Design and characterization of a DNA‐encoded, voltage‐sensitive fluorescent protein , 2001, The European journal of neuroscience.

[42]  Jun Ohta,et al.  CMOS on-chip bio-imaging sensor with integrated micro light source array for optogenetics , 2012 .

[43]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[44]  Patrick Degenaar,et al.  Multi-site optical excitation using ChR2 and micro-LED array , 2010, Journal of neural engineering.

[45]  Tuan Vo-Dinh,et al.  Biomedical Photonics Handbook , 2003 .

[46]  Suzie Dufour,et al.  A Multimodal Micro-Optrode Combining Field and Single Unit Recording, Multispectral Detection and Photolabeling Capabilities , 2013, PloS one.

[47]  D. Maclaurin,et al.  Optical recording of action potentials in mammalian neurons using a microbial rhodopsin , 2011, Nature Methods.

[48]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[49]  K. Deisseroth,et al.  Optogenetics in the behaving rat:integration of diverse new technologies in a vital animal model , 2013 .

[50]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[51]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[52]  R. Richards-Kortum,et al.  Fiber optic probes for biomedical optical spectroscopy. , 2003, Journal of biomedical optics.

[53]  Walther Akemann,et al.  Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins , 2010, Nature Methods.

[54]  Satoshi P. Tsunoda,et al.  Conversion of Channelrhodopsin into a Light-Gated Chloride Channel , 2014, Science.

[55]  S. Lenzen,et al.  The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol-disulfide milieu. , 2012, Free radical biology & medicine.

[56]  G. Miesenböck,et al.  The Optogenetic Catechism , 2009, Science.

[57]  Kay Schuster,et al.  Multi-core fiber with integrated fiber Bragg grating for background free Raman sensing , 2013, Photonics West - Biomedical Optics.

[58]  L. Looger,et al.  Genetically encoded neural activity indicators , 2012, Current Opinion in Neurobiology.

[59]  Attila Losonczy,et al.  Multi‐array silicon probes with integrated optical fibers: light‐assisted perturbation and recording of local neural circuits in the behaving animal , 2010, The European journal of neuroscience.

[60]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[61]  Edward S Boyden,et al.  Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. , 2012, Optics letters.

[62]  D. Kleinfeld,et al.  An in vivo biosensor for neurotransmitter release and in situ receptor activity , 2009, Nature Neuroscience.

[63]  H. Hellinga,et al.  Visualization of Synaptic Inhibition with an Optogenetic Sensor Developed by Cell-Free Protein Engineering Automation , 2013, The Journal of Neuroscience.

[64]  B. Dietzek,et al.  Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing. , 2012, Optics express.

[65]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[66]  John A Rogers,et al.  Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics , 2013, Nature Protocols.

[67]  Claire E McKellar,et al.  Rational design of a high-affinity, fast, red calcium indicator R-CaMP2 , 2014, Nature Methods.

[68]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[69]  Aleksander Rebane,et al.  A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging , 2014, Nature Communications.

[70]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[71]  Francisco Bezanilla,et al.  A hybrid approach to measuring electrical activity in genetically specified neurons , 2005, Nature Neuroscience.

[72]  Ming Yin,et al.  Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices , 2010, Proceedings of the IEEE.

[73]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[74]  M Duff Davis,et al.  In vivo spectrometric calcium flux recordings of intrinsic caudate-putamen cells and transplanted IMR-32 neuroblastoma cells using miniature fiber optrodes in anesthetized and awake rats and monkeys , 2000, Journal of Neuroscience Methods.

[75]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Yasushi Miyashita,et al.  A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures , 2012, Journal of Neuroscience Methods.

[77]  Réal Vallée,et al.  Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. , 2012, Journal of biomedical optics.

[78]  Eran Stark,et al.  Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. , 2012, Journal of neurophysiology.

[79]  S. Nakanishi,et al.  Spatio‐temporal control of neural activity in vivo using fluorescence microendoscopy , 2012, The European journal of neuroscience.

[80]  Raymond P. Molloy,et al.  In vivo multiphoton microscopy of deep brain tissue. , 2004, Journal of neurophysiology.

[81]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[82]  D. Humphrey,et al.  Extracellular Single-Unit Recording Methods , 1990 .

[83]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[84]  E. Bamberg,et al.  Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh , 2011, Nature Neuroscience.

[85]  Benoit Gosselin,et al.  A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[86]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[88]  Patrick S. Stumpf,et al.  Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa*♦ , 2010, The Journal of Biological Chemistry.

[89]  C. Casanova,et al.  Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics , 2014, PloS one.

[90]  Weihua Pei,et al.  A fiber-based implantable multi-optrode array with contiguous optical and electrical sites , 2013, Journal of neural engineering.

[91]  J. Assad,et al.  Multipoint-Emitting Optical Fibers for Spatially Addressable In Vivo Optogenetics , 2014, Neuron.

[92]  A. Zorzos,et al.  Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. , 2010, Optics letters.

[93]  G. Buzsáki,et al.  Inhibition-Induced Theta Resonance in Cortical Circuits , 2013, Neuron.

[94]  Dwayne W. Godwin,et al.  A magnetic rotary optical fiber connector for optogenetic experiments in freely moving animals , 2014, Journal of Neuroscience Methods.

[95]  Karl Deisseroth,et al.  Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel , 2014, Science.

[96]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[97]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[98]  Ramin Pashaie,et al.  Single Optical Fiber Probe for Fluorescence Detection and Optogenetic Stimulation , 2013, IEEE Transactions on Biomedical Engineering.

[99]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[100]  F. Solzbacher,et al.  A 3D glass optrode array for optical neural stimulation , 2012, Biomedical optics express.

[101]  Adam E. Cohen,et al.  Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein , 2011, Science.

[102]  S. Hayashi,et al.  A Blue-shifted Light-driven Proton Pump for Neural Silencing* , 2013, The Journal of Biological Chemistry.

[103]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[104]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[105]  M. Deschenes,et al.  A microprobe for parallel optical and electrical recordings from single neurons in vivo , 2011, Nature Methods.

[106]  Ilan Lampl,et al.  Optopatcher—An electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation , 2013, Journal of Neuroscience Methods.

[107]  Samouil L. Farhi,et al.  All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins , 2014, Nature Methods.

[108]  R. Tsien,et al.  Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters , 2008, Proceedings of the National Academy of Sciences.

[109]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[110]  V. Pieribone,et al.  A Fluorescent, Genetically-Encoded Voltage Probe Capable of Resolving Action Potentials , 2012, PloS one.

[111]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[112]  J. A. Dani,et al.  Flexible optitrode for localized light delivery and electrical recording. , 2012, Optics letters.

[113]  Ikuko T Smith,et al.  Getting it through your thick skull , 2014, Nature Neuroscience.

[114]  K. Mathieson,et al.  Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. , 2013, Optics letters.

[115]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations , 2014, Neuron.

[116]  Benjamin R. Arenkiel,et al.  Fiber-optic implantation for chronic optogenetic stimulation of brain tissue. , 2012, Journal of visualized experiments : JoVE.

[117]  Jim Berg,et al.  A genetically encoded fluorescent reporter of ATP/ADP ratio , 2008, Nature Methods.

[118]  B. Connors,et al.  Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue , 2009, Journal of neural engineering.

[119]  Eran Stark,et al.  In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. , 2023, ArXiv.

[120]  Mark J. Schnitzer,et al.  Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors , 2014, Nature Communications.

[121]  Yoon-Kyu Song,et al.  Transparent micro-optrode arrays for simultaneous multichannel optical stimulation and electrical recording , 2013, CLEO: 2013.

[122]  Mathew Tantama,et al.  S 1 Imaging Intracellular pH in Live Cells with a Genetically-Encoded Red Fluorescent Protein Sensor , 2011 .

[123]  S. Nelson,et al.  The problem of neuronal cell types: a physiological genomics approach , 2006, Trends in Neurosciences.

[124]  T. Murphy,et al.  Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice , 2009, Nature Methods.

[125]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[126]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[127]  Jessica A. Cardin,et al.  Noninvasive optical inhibition with a red-shifted microbial rhodopsin , 2014, Nature Neuroscience.

[128]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.