Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

[1]  Philippe Lambert,et al.  Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations , 2001 .

[2]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[3]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[4]  C. Robert,et al.  Bayesian Modeling Using WinBUGS , 2009 .

[5]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[6]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[7]  Lennart F. Hoogerheide,et al.  Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations , 2009, R J..

[8]  Michael McAleer,et al.  Realized Volatility and Long Memory: An Overview , 2008 .

[9]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[10]  Stefano Grassi,et al.  It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model , 2013 .

[11]  Robert B. Gramacy,et al.  Efficient Bayesian inference for natural time series using ARFIMA processes , 2015 .

[12]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[13]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[14]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[15]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .