The integer cohomology algebra of toric arrangements

We compute the cohomology ring of the complement of a toric arrangement with integer coefficients and investigate its dependency from the arrangement's combinatorial data. To this end, we study a morphism of spectral sequences associated to certain combinatorially defined subcomplexes of the toric Salvetti category in the complexified case, and use a technical argument in order to extend the results to full generality. As a byproduct we obtain: -a "combinatorial" version of Brieskorn's lemma in terms of Salvetti complexes of complexified arrangements, -a uniqueness result for realizations of arithmetic matroids with at least one basis of multiplicity 1.

[1]  D. Tamaki Cellular Stratified Spaces I: Face Categories and Classifying Spaces , 2011, 1106.3772.

[2]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[3]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[4]  S. Yuzvinsky,et al.  Orlik-Solomon algebras in algebra and topology , 2001 .

[5]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[6]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[7]  Emanuele Delucchi,et al.  Minimality of toric arrangements , 2011, 1112.5041.

[8]  E. Looijenga Cohomology of M3 and M1/3 , 1993 .

[9]  R. Thomason Homotopy colimits in the category of small categories , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Alex Fink,et al.  Matroids Over a Ring , 2012 .

[11]  R. Hain,et al.  Mapping Class Groups and Moduli Spaces of Riemann Surfaces , 1993 .

[12]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[13]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[14]  Luca Moci A Tutte polynomial for toric arrangements , 2009 .

[15]  R. Godement,et al.  Topologie algébrique et théorie des faisceaux , 1960 .

[16]  S. Eilenberg,et al.  Homological Algebra (PMS-19) , 1956 .

[17]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[18]  Stephen Weingram,et al.  The Topology of CW Complexes , 1969 .

[19]  Richard Ehrenborg,et al.  Affine and Toric Hyperplane Arrangements , 2009, Discret. Comput. Geom..

[20]  Günter M. Ziegler,et al.  Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..

[21]  Volkmar Welker,et al.  Homotopy colimits – comparison lemmas for combinatorial applications , 1999 .

[22]  Christin Bibby Cohomology of abelian arrangements , 2015 .

[23]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[24]  Kenneth Baclawski,et al.  Whitney Numbers of Geometric Lattices , 1975 .

[25]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[26]  M. Vergne,et al.  Vector partition functions and generalized dahmen and micchelli spaces , 2010 .

[27]  S. Settepanella,et al.  The homotopy type of toric arrangements , 2010, 1009.3622.

[28]  P. Deligne Theorie de Hodge I , 1970 .

[29]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[30]  C. Concini,et al.  Projective Wonderful Models for Toric Arrangements , 2016, 1608.08746.

[31]  Jim Lawrence,et al.  Enumeration in torus arrangements , 2011, Eur. J. Comb..

[32]  Cl'ement Dupont,et al.  The Orlik-Solomon model for hypersurface arrangements , 2013, 1302.2103.

[33]  C. Procesi,et al.  On the geometry of toric arrangements , 2005 .

[34]  Luca Moci,et al.  The multivariate arithmetic Tutte polynomial , 2012 .

[35]  Luca Moci Wonderful Models for Toric Arrangements , 2009, 0912.5461.

[36]  Dmitry N. Kozlov,et al.  Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.

[37]  Egbert Brieskorn,et al.  Sur les groupes de tresses [d'après V. I. Arnol'd] , 1973 .

[38]  A Salvetti complex for Toric Arrangements and its fundamental group , 2011, 1101.4111.

[39]  Deletion-restriction in toric arrangements , 2014, 1406.0302.

[40]  Mario Salvetti,et al.  Topology of the complement of real hyperplanes in ℂN , 1987 .

[41]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[42]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .