Unconditional $$L^{\infty }$$L∞-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions

This paper is concerned with the unconditional and optimal $$L^{\infty }$$L∞-error estimates of two fourth-order (in space) compact conservative finite difference time domain schemes for solving the nonlinear Schrödinger equation in two or three space dimensions. The fact of high space dimension and the approximation via compact finite difference discretization bring difficulties in the convergence analysis. The two proposed schemes preserve the total mass and energy in the discrete sense. To establish the optimal convergence results without any constraint on the time step, besides the standard energy method, the cut-off function technique as well as a ‘lifting’ technique are introduced. On the contrast, previous works in the literature often require certain restriction on the time step. The convergence rate of the proposed schemes are proved to be of $$O(h^4+\tau ^2)$$O(h4+τ2) with time step $$\tau $$τ and mesh size h in the discrete $$L^{\infty }$$L∞-norm. The analysis method can be directly extended to other finite difference schemes for solving the nonlinear Schrödinger-type equations. Numerical results are reported to support our theoretical analysis, and investigate the effect of the nonlinear term and initial data on the blow-up solution.

[1]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[2]  P. Dirac Principles of Quantum Mechanics , 1982 .

[3]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[4]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[5]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[6]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[7]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[8]  John Argyris,et al.  An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .

[9]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[10]  D. Pathria,et al.  Pseudo-spectral solution of nonlinear Schro¨dinger equations , 1990 .

[11]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[12]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[13]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[14]  Qianshun Chang,et al.  Finite difference method for generalized Zakharov equations , 1995 .

[15]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[16]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[17]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[18]  R. J. Ballagh,et al.  Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates , 1999 .

[19]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[20]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[21]  Carlo F. Barenghi,et al.  Quantized vortex dynamics and superfluid turbulence , 2001 .

[22]  Murat Subaşi,et al.  On the finite‐differences schemes for the numerical solution of two dimensional Schrödinger equation , 2002 .

[23]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[24]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[25]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[26]  Bertil Gustafsson,et al.  Time Compact Difference Methods for Wave Propagation in Discontinuous Media , 2004, SIAM J. Sci. Comput..

[27]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[28]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[29]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[30]  A. Aftalion Vortices in Bose-Einstein Condensates , 2006 .

[31]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[32]  Michel Peyrard,et al.  Physics of Solitons , 2006 .

[33]  Weizhu Bao,et al.  Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization , 2007 .

[34]  Murli M. Gupta,et al.  Convergence of Fourth Order Compact Difference Schemes for Three-Dimensional Convection-Diffusion Equations , 2007, SIAM J. Numer. Anal..

[35]  Weizhu Bao,et al.  The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics , 2007 .

[36]  Peter A. Markowich Applied partial differential equations - a visual approach , 2007 .

[37]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[38]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[39]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[40]  Jie Shen,et al.  A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..

[41]  M. Thalhammer,et al.  On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .

[42]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[43]  Ameneh Taleei,et al.  Numerical solution of nonlinear Schrödinger equation by using time‐space pseudo‐spectral method , 2010 .

[44]  THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHRODINGER EQUATIONS IN THREE SPACE DIMENSIONS , 2010 .

[45]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[46]  R. Dreizler,et al.  Density Functional Theory: An Advanced Course , 2011 .

[47]  Shusen Xie,et al.  Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations , 2011 .

[48]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[49]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[50]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[51]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[52]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[53]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[54]  Fatkhulla Kh. Abdullaev,et al.  Optical Solitons , 2014 .

[55]  Tingchun Wang,et al.  Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions , 2014 .

[56]  Tingchun Wang,et al.  OPTIMAL POINT-WISE ERROR ESTIMATE OF A COMPACT FINITE DIFFERENCE SCHEME FOR THE COUPLED NONLINEAR SCHR ¨ ODINGER EQUATIONS * , 2014 .

[57]  Christophe Besse,et al.  High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations , 2016, J. Comput. Phys..

[58]  Qi Wang,et al.  A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..

[59]  Rongpei Zhang,et al.  A conservative spectral collocation method for the nonlinear Schrödinger equation in two dimensions , 2017, Appl. Math. Comput..

[60]  Ting-chun Wang,et al.  Optimal error estimate of a compact scheme for nonlinear Schrödinger equation , 2017 .

[61]  Tingchun Wang,et al.  Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation , 2018, Science China Mathematics.

[62]  Xiaofei Zhao,et al.  Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions , 2018, Adv. Comput. Math..