Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates

Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured.

[1]  A. Otto,et al.  Surface enhanced Raman scattering , 1983 .

[2]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[3]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[4]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[5]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[6]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[7]  L. Tay,et al.  Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? , 2000 .

[8]  Emil Prodan,et al.  Structural Tunability of the Plasmon Resonances in Metallic Nanoshells , 2003 .

[9]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[10]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[11]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[12]  Lewis J. Rothberg,et al.  The structural basis for giant enhancement enabling single-molecule Raman scattering , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[14]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[15]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[16]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[17]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[18]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[19]  Tao Zhu,et al.  Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling , 2004 .

[20]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Richards-Kortum,et al.  Near-Infrared Raman Spectroscopy for in vivo Detection of Cervical Precancers , 2001, Photochemistry and photobiology.

[22]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[23]  R. J. Brown,et al.  Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. , 2004, The Journal of chemical physics.

[24]  G. Chumanov,et al.  Poly(Vinyl Pyridine) as a Universal Surface Modifier for Immobilization of Nanoparticles , 2002 .

[25]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[26]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[27]  Naoki Matsuda,et al.  Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution , 1994 .

[28]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[29]  Naomi J. Halas,et al.  Light scattering from dipole and quadrupole nanoshell antennas , 1999 .

[30]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[31]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[32]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[33]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[34]  Nobuyuki Mohri,et al.  Desorption of 4-Aminobenzenethiol Bound to a Gold Surface , 1998 .

[35]  R. Dasari,et al.  Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. , 1996, Physical review letters.

[36]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[37]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[38]  J L West,et al.  A whole blood immunoassay using gold nanoshells. , 2003, Analytical chemistry.