Compliant Mechanical Amplifier Design using Multiple Optimally Placed Actuators

This article discusses a methodology for designing compliant mechanisms with piezoelectric actuation to obtain maximum deflection and force at the output point. The focus is on design of compliant mechanisms with multiple piezoelectric actuators. The number, size, and position of the actuators within the compliant mechanism are optimized for the maximum output deflection. Predicted results demonstrate that compliant mechanisms with multiple, optimally placed actuators outperform those with a single actuator placed at a predetermined location.

[1]  I. Bruant,et al.  A methodology for determination of piezoelectric actuator and sensor location on beam structures , 2001 .

[2]  Robert C. Wetherhold,et al.  Optimal Size and Location of Piezoelectric Actuator/Sensors: Practical Considerations , 1997, Adaptive Structures and Material Systems.

[3]  Lizeng Sheng,et al.  Genetic Algorithms for the optimization of piezoelectric actuator locations , 2000 .

[4]  Fariba Fahroo,et al.  Optimal location of piezoceramic actuators for vibration suppression of a flexible structure , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[5]  Mary Frecker,et al.  Optimal design of tendon-actuated morphing structures: nonlinear analysis and parallel algorithm , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  N. Kikuchi,et al.  Optimal design of piezoelectric microstructures , 1997 .

[7]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[8]  Inderjit Chopra,et al.  Design of a bidirectional piezoelectric actuator for blade trailing-edge flap , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Mary Frecker,et al.  Aircraft Structural Morphing Using Tendon-Actuated Compliant Cellular Trusses , 2005 .

[10]  M. Frecker,et al.  Optimal Design and Experimental Validation of Compliant Mechanical Amplifiers for Piezoceramic Stack Actuators , 2000 .

[11]  Hiroshi Furuya,et al.  Combining genetic and deterministic algorithms for locating actuators on space structures , 1995 .

[12]  Mary Frecker,et al.  Topology optimization and detailed finite element modeling of piezoelectric actuators: effect of external loads and detail geometry on actuator output , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  Singiresu S Rao,et al.  Optimal placement of actuators in actively controlled structures using genetic algorithms , 1991 .

[14]  S. Hall,et al.  Design of a high efficiency, large stroke, electromechanical actuator , 1999 .

[15]  Susumu Ejima,et al.  Optimal Structural Design of Compliant Mechanisms. (Considering of Quantitative Displacement Constraint). , 2000 .

[16]  R. Kapania,et al.  Control of Thermal Deformations of Spherical Mirror Segment , 1998 .

[17]  Gun-Shing Chen,et al.  OPTIMAL PLACEMENT OF ACTIVE/PASSIVE MEMBERS IN TRUSS STRUCTURES USING SIMULATED ANNEALING , 1991 .

[18]  Mary Frecker,et al.  Optimal Design and Experimental Characterization of a Compliant Mechanism Piezoelectric Actuator for Inertially Stabilized Rifle , 2004 .

[19]  Mary Frecker,et al.  Topology optimization of compliant mechanical amplifiers for piezoelectric actuators , 2000 .

[20]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[21]  L Padula Sharon,et al.  Optimal Sensor/Actuator Locations for Active Structural Acoustic Control , 1998 .

[22]  William Prager,et al.  Optimal structural design for given deflection , 1970 .

[23]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[24]  Mary Frecker,et al.  Actuation development and evaluation for INSTAR: inertially stabilized rifle , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.