Flows for simultaneous manifold learning and density estimation

We introduce manifold-learning flows (M-flows), a new class of generative models that simultaneously learn the data manifold as well as a tractable probability density on that manifold. Combining aspects of normalizing flows, GANs, autoencoders, and energy-based models, they have the potential to represent datasets with a manifold structure more faithfully and provide handles on dimensionality reduction, denoising, and out-of-distribution detection. We argue why such models should not be trained by maximum likelihood alone and present a new training algorithm that separates manifold and density updates. In a range of experiments we demonstrate how M-flows learn the data manifold and allow for better inference than standard flows in the ambient data space.

[1]  Ivan Sosnovik,et al.  PIE: Pseudo-Invertible Encoder , 2018, ArXiv.

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Abhishek Kumar,et al.  Regularized Autoencoders via Relaxed Injective Probability Flow , 2020, AISTATS.

[4]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[5]  Mariusz Bojarski,et al.  Invertible Autoencoder for domain adaptation , 2018, Comput..

[6]  Tong Che,et al.  Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling , 2020, NeurIPS.

[7]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[8]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[9]  Jakob H. Macke,et al.  Likelihood-free inference with emulator networks , 2018, AABI.

[10]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[11]  Gilles Louppe,et al.  Likelihood-free inference with an improved cross-entropy estimator , 2018, ArXiv.

[12]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[13]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[14]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[15]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2020, Proceedings of the National Academy of Sciences.

[16]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[17]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[18]  Stefano Ermon,et al.  Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models , 2017, AAAI.

[19]  Gurtej Kanwar,et al.  Normalizing Flows on Tori and Spheres , 2020, ICML.

[20]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[21]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[22]  Yaron Lipman,et al.  Implicit Geometric Regularization for Learning Shapes , 2020, ICML.

[23]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[24]  Yann LeCun,et al.  Backpropagation for Implicit Spectral Densities , 2018, ArXiv.

[25]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[26]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[27]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[28]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[29]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[30]  Alain Trouvé,et al.  Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.

[31]  Gurtej Kanwar,et al.  Equivariant flow-based sampling for lattice gauge theory , 2020, Physical review letters.

[32]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[33]  Gilles Louppe,et al.  Approximating Likelihood Ratios with Calibrated Discriminative Classifiers , 2015, 1506.02169.

[34]  Bernhard Schölkopf,et al.  From Variational to Deterministic Autoencoders , 2019, ICLR.

[35]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[36]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Mario Lucic,et al.  Are GANs Created Equal? A Large-Scale Study , 2017, NeurIPS.

[38]  Renjie Liao,et al.  Latent Variable Modelling with Hyperbolic Normalizing Flows , 2020, ICML.

[39]  Arthur Gretton,et al.  KALE: When Energy-Based Learning Meets Adversarial Training , 2020, ArXiv.

[40]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[41]  David Duvenaud,et al.  Residual Flows for Invertible Generative Modeling , 2019, NeurIPS.

[42]  Divakar Viswanath,et al.  The fractal property of the Lorenz attractor , 2004 .

[43]  Jaakko Lehtinen,et al.  Analyzing and Improving the Image Quality of StyleGAN , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[45]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[46]  K. Cranmer,et al.  MadMiner: Machine Learning-Based Inference for Particle Physics , 2019, Computing and Software for Big Science.

[47]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[48]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..