Fabrication of multilayer metamaterials by femtosecond laser‐induced forward‐transfer technique

A novel method based on femtosecond laser-induced forward transfer for high-throughput and efficient fabrication of periodic multilayer plasmonic metamaterials is demonstrated. With precisely controlling laser raster path applied on sputtered multilayer thin films, the laser-ablated materials can be transferred to another substrate leaving the fabricated multilayer structure on the original substrate. Subsequently, three-dimensional metamaterials can be made by multilayer structuring. Moreover, all the experimental results show that to create such multilayer split resonant rings (SRRs) with uniform profile, the laser fluence should be fine controlled under proper conditions. The optical property of fabricated multilayer SRR array is investigated by optical measurements and finite-difference time-domain simulations, showing various resonant modes in the middle-IR region. The calculated induced current distributions exhibit rich resonance properties of the structures as well. This work markedly extends the laser direct writing technique to a wide application in fabricating complicated metamaterials and plasmonic devices efficiently.

[1]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[2]  W. T. Chen,et al.  Fabrication of three dimensional split ring resonators by stress-driven assembly method. , 2012, Optics express.

[3]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[4]  R. Eason,et al.  Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE) , 2009 .

[5]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[6]  Carsten Reinhardt,et al.  Rapid prototyping of optical components for surface plasmon polaritons. , 2007, Optics express.

[7]  Minghui Hong,et al.  Laser precision engineering: from microfabrication to nanoprocessing , 2010 .

[8]  Cheng-Kuo Sung,et al.  Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method , 2006 .

[9]  Vicentiu Grosu,et al.  Microdroplet deposition by laser-induced forward transfer , 2005 .

[10]  Abul K. Azad,et al.  Manipulation of terahertz radiation using metamaterials , 2011 .

[11]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[12]  J. M. Fernández-Pradas,et al.  Preparation of functional DNA microarrays through laser-induced forward transfer , 2004 .

[13]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[14]  Ai Qun Liu,et al.  Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer. , 2011, Optics express.

[15]  R. Eason,et al.  Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate , 2008 .

[16]  Din Ping Tsai,et al.  Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. , 2011, Optics express.

[17]  Ioanna Zergioti,et al.  Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer , 2006 .

[18]  Xueqin Huang,et al.  Electric and magnetic resonances in broadside coupled split-ring resonators: An extended mode-expansion theory , 2008 .

[19]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[20]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[21]  Douglas B. Chrisey,et al.  Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia) , 2004 .

[22]  A. Ikiades,et al.  Microprinting and microetching of diffractive structures using ultrashort laser pulses , 1999 .

[23]  R. Osellame,et al.  Femtosecond laser microstructuring: an enabling tool for optofluidic lab‐on‐chips , 2011 .

[24]  Hyoungsub Kim,et al.  Photoresist‐Free Lithographic Patterning of Solution‐Processed Nanostructured Metal Thin Films , 2008 .

[25]  C. Rockstuhl,et al.  3D THz metamaterials from micro/nanomanufacturing , 2012 .

[26]  C. Lu,et al.  Interference lithography: a powerful tool for fabricating periodic structures , 2010 .

[27]  A. Zayats,et al.  Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. , 2011, Physical review letters.

[28]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[29]  B. Wood Structure and properties of electromagnetic metamaterials , 2007 .

[30]  V. Shalaev Optical negative-index metamaterials , 2007 .

[31]  Boris N. Chichkov,et al.  Laser fabrication of large-scale nanoparticle arrays for sensing applications. , 2011, ACS nano.

[32]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[33]  S Kawata,et al.  Three-dimensional optical memory with a photorefractive crystal. , 1995, Applied optics.

[34]  Saulius Juodkazis,et al.  Evidence of superdense synthesized by ultrafast microexplosion , 2011, Nature communications.

[35]  D. P. Tsai,et al.  Toroidal Dipolar Response in a Metamaterial , 2010, Science.

[36]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[37]  David R. Smith,et al.  Infrared metamaterial phase holograms. , 2012, Nature materials.

[38]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[40]  Vladimir M. Shalaev,et al.  Plasmonic nanoantenna arrays for the visible , 2008 .

[41]  J. Baudon,et al.  Comparative focusing of Maxwell and Dirac fields by negative-refraction half-space , 2011 .

[42]  Satoshi Kawata,et al.  Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies , 2007 .

[43]  Ioanna Zergioti,et al.  Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor. , 2008, Optics express.

[44]  Y. Gong,et al.  Parallel laser microfabrication of terahertz metamaterials and its polarization-dependent transmission property , 2010 .