A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

Abstract The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltepetl, Nevado de Toluca, Popocatepetl and El Chichon, to obtain hazard estimates.

[1]  P. Enos,et al.  Field Trip Guide , 1983 .

[2]  A. Duncan Volcanoes of the World (2nd edition) , 1996 .

[3]  D. Pyle Forecasting sizes and repose times of future extreme volcanic events , 1998 .

[4]  V. Garduño-Monroy,et al.  Geology and geochemistry characteristics of the Chiapanecan Volcanic Arc (Central Area), Chiapas Mexico , 2007 .

[5]  E. E. F. d'Albe,et al.  Objectives of volcanic monitoring and prediction , 1979 .

[6]  M. D'antonio,et al.  Reconstrucción del evento eruptivo asociado al emplazamiento del flujo piroclástico El Refugio hace 13 ka, volcán Nevado de Toluca (México) , 2008 .

[7]  M. Bebbington Identifying volcanic regimes using Hidden Markov Models , 2007 .

[8]  Michael Turner,et al.  Developing probabilistic eruption forecasts for dormant volcanoes: a case study from Mt Taranaki, New Zealand , 2008 .

[9]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[10]  M. Bebbington,et al.  Statistical analysis of New Zealand volcanic occurrence data , 1996 .

[11]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[12]  A. McNeil,et al.  The Peaks over Thresholds Method for Estimating High Quantiles of Loss Distributions , 1998 .

[13]  J. L. Macías,et al.  Miocene to Recent structural evolution of the Nevado de Toluca volcano region, Central Mexico , 2000 .

[14]  S. Beguerı́a Uncertainties in partial duration series modelling of extremes related to the choice of the threshold value , 2005 .

[15]  W. Marzocchi,et al.  BET_EF: a probabilistic tool for long- and short-term eruption forecasting , 2008 .

[16]  G. Carrasco‐Núñez,et al.  Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt , 2002 .

[17]  Eugene I. Smith,et al.  Hazard area and probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA , 2006 .

[18]  C. Robin Le Volcan Popocatepetl (Mexique): structure, evolution pétrologique et risques , 1984 .

[19]  C. Escalante-Sandoval,et al.  Bivariate estimation of extreme wind speeds , 2008 .

[20]  Chih-Hsiang Ho,et al.  Time trend analysis of basaltic volcanism for the Yucca Mountain site , 1991 .

[21]  D. Cox,et al.  The statistical analysis of series of events , 1966 .

[22]  Charles B. Connor,et al.  Statistics in Volcanology , 2006 .

[23]  Bruce F. Houghton,et al.  The encyclopedia of volcanoes , 1999 .

[24]  J. L. Macías,et al.  Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field , 2004 .

[25]  Servando Cruz-Reyna,et al.  Poisson-distributed patterns of explosive eruptive activity , 1991 .

[26]  Statistical analysis of some volcanologic data regarded as series of point events , 1969 .

[27]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[28]  J. L. Macías,et al.  Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico , 2002 .

[29]  Chih-Hsiang Ho Sensitivity in volcanic hazard assessment for the Yucca Mountain high-level nuclear waste repository site: The model and the data , 1995 .

[30]  S. Cruz-Reyna Random patterns of occurrence of explosive eruptions at Colima Volcano, Mexico , 1993 .

[31]  C. Siebe,et al.  Neogene-Quaternary Continental Margin Volcanism: A perspective from Me´xico , 2006 .

[32]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[33]  J. L. Macías,et al.  Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico , 2000 .

[34]  An Empirical Bayes Analysis of Volcanic Eruptions , 2001 .

[35]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[36]  C. Schonwiese Volcanic activity parameters and volcanism-climate relationships within the recent centuries , 1988 .

[37]  A statistical model for vesuvius and its volcanological implications , 1981 .

[38]  S. Löw,et al.  Estimation of volcanic hazards based on Cox stochastic processes , 2000 .

[39]  James Pickands,et al.  The two-dimensional Poisson process and extremal processes , 1971, Journal of Applied Probability.

[40]  M. Sheridan,et al.  Volcanic history of El Chichón Volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity , 2000 .

[41]  Min Xie,et al.  Efficient estimation of the weibull shape parameter based on a modified profile likelihood , 2003 .

[42]  L. Vázquez-selem,et al.  The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: Stratigraphy and hazard implications , 2003 .

[43]  Chin-Diew Lai,et al.  On nonhomogeneous models for volcanic eruptions , 1996 .

[44]  F. E. Wickman Markov Models of Repose-Period Patterns of Volcanoes , 1976 .

[45]  F. Mulargia,et al.  IDENTIFYING DIFFERENT REGIMES IN ERUPTIVE ACTIVITY: AN APPLICATION TO ETNA VOLCANO , 1987 .

[46]  C. Robin Volcan popocatepetl (Mexico): Structure, petrology and risks , 1984 .

[47]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[48]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  X. G. Lin Statistical Modelling of Severe Wind Gust , 2003 .

[50]  Debbie J. Dupuis,et al.  Estimating the probability of obtaining nonfeasible parameter estimates of the generalized pareto distribution , 1996 .

[51]  A. Palumbo Long-term forecasting of large volcanic eruptions , 1997 .

[52]  Chih-Hsiang Ho,et al.  Nonhomogeneous Poisson model for volcanic eruptions , 1991 .

[53]  G. Carrasco‐Núñez,et al.  Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt , 1999 .

[54]  J. L. Macías,et al.  The Lower Toluca Pumice: A ca. 21,700 yr B.P. Plinian eruption of Nevado de Toluca volcano, México , 2006 .

[55]  W. Scott,et al.  Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire , 1994 .

[56]  M. Abrams,et al.  Repeated volcanic disasters in Prehispanic time at Popocatépetl, central Mexico: Past key to the future? , 1996 .

[57]  Fred W. Klein,et al.  Patterns of historical eruptions at Hawaiian volcanoes , 1982 .

[58]  D. Merriam Random Processes in Geology , 1975 .

[59]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[60]  Carlos Navarro,et al.  Summary of the historical eruptive activity of Volcán De Colima, Mexico 1519–2000 , 2002 .

[61]  J. Komorowski,et al.  Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico , 1997 .

[62]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[63]  B. Gutenberg,et al.  Frequency of Earthquakes in California , 1944, Nature.

[64]  Chih-Hsiang Ho Bayesian analysis of volcanic eruptions , 1990 .

[65]  Paolo Gasparini,et al.  Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius , 2004 .

[66]  S. Self,et al.  Sulphur-rich volcanic eruptions and stratospheric aerosols , 1984, Nature.

[67]  Fahim Ashkar,et al.  Revisiting some estimation methods for the generalized Pareto distribution , 2007 .

[68]  Norman L. Johnson,et al.  Cumulative Sum Control Charts and the Weibull Distribution , 1966 .

[69]  W. Marzocchi,et al.  A quantitative model for the time-size distribution of eruptions , 2006 .

[70]  O. A. Braitseva,et al.  Great explosive eruptions on Kamchatka during the last 10,000 years: Self‐similar irregularity of the output of volcanic products , 2003 .

[71]  J. L. Macías,et al.  The 12.1 ka Middle Toluca Pumice: A dacitic Plinian–subplinian eruption of Nevado de Toluca in Central Mexico , 2005 .

[72]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .

[73]  Bernard Bobée,et al.  Towards operational guidelines for over-threshold modeling , 1999 .

[74]  G. Carrasco‐Núñez Structure and proximal stratigraphy of Citlaltepetl Volcano (Pico de Orizaba), Mexico , 2000 .

[75]  J. L. Macías,et al.  A 2.5 ka History of Dacitic Magmatism at Nevado de Toluca, Mexico: Petrological, 40Ar/39Ar Dating, and Experimental Constraints on Petrogenesis , 2006 .

[76]  R. Tilling,et al.  Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system , 2008 .

[77]  Michael Thomas,et al.  Statistical Analysis of Extreme Values , 2008 .

[78]  Jean Palutikof,et al.  Tests of the Generalized Pareto Distribution for Predicting Extreme Wind Speeds , 2000 .

[79]  Christopher G Newhall,et al.  Constructing event trees for volcanic crises , 2002 .

[80]  S. Cruz-Reyna,et al.  Long-Term Probabilistic Analysis of Future Explosive Eruptions , 1996 .

[81]  J. Luhr Volcanic shade causes cooling , 1991, Nature.

[82]  Neogene-Quaternary continental margin volcanism : a perspective from México , 2006 .

[83]  Roberto Carniel,et al.  Using hidden multi-state Markov models with multi-parameter volcanic data to provide empirical evidence for alert level decision-support , 2006 .