A local rational model approach for H ∞ norm estimation:With application to an active vibration isolation system

Robust control design hinges on the availability of an accurate uncertainty model. The aim of this paper is to develop an approach for accurate uncertainty modeling. The proposed method is based on H∞-norm estimation, or peak amplitude. A new approach is developed that explicitly takes into account inter-grid frequency behavior while only requiring a reduced experiment time, modeling effort, and limited user intervention. In particular, the proposed method relies on local rational models. Experimental results on an active vibration isolation system confirm that the approach is able to handle lightly-damped systems with significantly less data compared to spectral estimation and local polynomial estimation techniques.

[1]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[2]  Sippe G. Douma,et al.  Relations between uncertainty structures in identification for robust control , 2005, Autom..

[3]  Johan Schoukens,et al.  Enhancing ℋ∞ Norm Estimation using Local LPM/LRM Modeling: Applied to an AVIS , 2014 .

[4]  A. van der Maas,et al.  Non-Parametric Identification for High-Precision Motion Systems , 2015 .

[5]  Yves Rolain,et al.  Leakage Reduction in Frequency-Response Function Measurements , 2006, IEEE Transactions on Instrumentation and Measurement.

[6]  T. McKelvey,et al.  Non-parametric frequency response estimation using a local rational model , 2012 .

[7]  David S. Bayard,et al.  A globally optimal minimax solution for spectral overbounding and factorization , 1995, IEEE Trans. Autom. Control..

[8]  Yves Rolain,et al.  Design of Quasi-Logarithmic Multisine Excitations for Robust Broad Frequency Band Measurements , 2013, IEEE Transactions on Instrumentation and Measurement.

[9]  Tom Oomen,et al.  Identification of High-Tech Motion Systems: An Active Vibration Isolation Benchmark , 2015 .

[10]  Håkan Hjalmarsson,et al.  Iterative Data-Driven ${\cal H}_{\infty}$ Norm Estimation of Multivariable Systems With Application to Robust Active Vibration Isolation , 2014, IEEE Transactions on Control Systems Technology.

[11]  Kurt Artoos,et al.  Review of Active Vibration Isolation Strategies , 2011 .

[12]  Guoxiang Gu,et al.  LFT uncertain model validation with time- and frequency-domain measurements , 1999, IEEE Trans. Autom. Control..

[13]  Gerd Vandersteen,et al.  Nonparametric preprocessing in system identification: A powerful tool , 2009, 2009 European Control Conference (ECC).

[14]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[15]  Yves Rolain,et al.  Bounding the Polynomial Approximation Errors of Frequency Response Functions , 2013, IEEE Transactions on Instrumentation and Measurement.

[16]  Bo Wahlberg,et al.  Non-parametric methods for L2-gain estimation using iterative experiments , 2010, Autom..

[17]  R. Oldenburger,et al.  Signal stabilization of self-oscillating systems , 1959 .

[18]  J. Schoukens,et al.  Estimation of nonparametric noise and FRF models for multivariable systems—Part II: Extensions, applications , 2010 .

[19]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[20]  Brian D. O. Anderson,et al.  From Youla-Kucera to Identification, Adaptive and Nonlinear Control , 1998, Autom..

[21]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .

[22]  Douwe K. de Vries,et al.  Quantification of model uncertainty from data , 1994 .

[23]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[24]  J. Schoukens,et al.  Estimation of nonparametric noise and FRF models for multivariable systems—Part I: Theory , 2010 .

[25]  Robert Kosut,et al.  Closed-Loop Identification via the Fractional Representation: Experiment Design , 1989, 1989 American Control Conference.

[26]  J. Schoukens,et al.  Frequency domain system identification using arbitrary signals , 1997, IEEE Trans. Autom. Control..

[27]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[28]  Tom Oomen,et al.  Well-Posed Model Uncertainty Estimation by Design of Validation Experiments , 2009 .