The kinetics and mechanism of dissociation of metal carbonyls in high infrared laser fields

Abstract The method of laser induced dielectric breakdown has been used to study the dissociation of three metal carbonyls. Following non-resonant excitation by a TEA CO2 laser, amorphous micro-metallic particles are deposited. The identity of the various species within a laser induced plasma for a series of related reactant molecules, has been determined using infrared and visible real time fluorescence techniques. Based upon the energetics of dissociation and the relative magnitudes of the rates of activation and deactivation for various collision partners of the plasma fluorescence, an energy transfer map as well as probable mechanisms are proposed. The kinetics of a variety of chemical reactions under plasma conditions are discussed in terms of elementary collision theory. It is shown that the internal vibration manifold of the metal carbonyls is equilibrated prior to the dissociation in agreement with the majority of laser induced multiphoton dissociation experiments.