Heavy-Ion and Laser Induced Charge Collection in SiGe Channel $p{\rm MOSFETs}$

Heavy-ion and two-photon-absorption (TPA) experiments have been performed on ultra-thin implant-free quantum well SiGe channel pMOSFETs. Both the single-event-transient pulse magnitude and polarity can depend strongly on the location of the strike along the device channel. The polarity inversion occurs primarily because very limited transient charge collection occurs below the quantum well, as confirmed by two-dimensional TCAD simulation.

[1]  En Xia Zhang,et al.  Bias Dependence of Total Ionizing Dose Effects in SiGe-MOS FinFETs , 2014, IEEE Transactions on Nuclear Science.

[2]  R. Pease,et al.  Subbandgap laser-induced single event effects: carrier generation via two-photon absorption , 2002 .

[3]  Alternative channel materials for MOS devices , 2008, 2008 IEEE Silicon Nanoelectronics Workshop.

[4]  M. Turowski,et al.  Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs , 2009, IEEE Transactions on Nuclear Science.

[5]  John D. Cressler,et al.  On the Potential of SiGe HBTs for Extreme Environment Electronics , 2005, Proceedings of the IEEE.

[6]  Tomas Palacios,et al.  Total-Ionizing-Dose Radiation Effects in AlGaN/GaN HEMTs and MOS-HEMTs , 2013, IEEE Transactions on Nuclear Science.

[7]  B. Kaczer,et al.  SiGe Channel Technology: Superior Reliability Toward Ultrathin EOT Devices—Part I: NBTI , 2013, IEEE Transactions on Electron Devices.

[8]  E. Simoen,et al.  Laser- and Heavy Ion-Induced Charge Collection in Bulk FinFETs , 2011, IEEE Transactions on Nuclear Science.

[9]  J. B. Boos,et al.  Single-Event Transient Sensitivity of InAlSb/InAs/AlGaSb High Electron Mobility Transistors , 2012, IEEE Transactions on Nuclear Science.

[10]  W. G. Bennett,et al.  The Impact of Depletion Region Potential Modulation on Ion-Induced Current Transient Response , 2013, IEEE Transactions on Nuclear Science.

[11]  A. F. Witulski,et al.  Time-Domain Reflectometry Measurements of Total-Ionizing-Dose Degradation of $n$ MOSFETs , 2013, IEEE Transactions on Nuclear Science.

[12]  A. Hikavyy,et al.  Dual-channel technology with cap-free single metal gate for high performance CMOS in gate-first and gate-last integration , 2011, 2011 International Electron Devices Meeting.

[13]  Nicholas C. Hooten,et al.  Charge Collection Mechanisms in AlGaN/GaN MOS High Electron Mobility Transistors , 2013, IEEE Transactions on Nuclear Science.

[14]  B. Kaczer,et al.  Improvements of NBTI reliability in SiGe p-FETs , 2010, 2010 IEEE International Reliability Physics Symposium.

[15]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[16]  A. Mercha,et al.  High-mobility 0.85nm-EOT Si0.45Ge0.55-pFETs: Delivering high performance at scaled VDD , 2010, 2010 International Electron Devices Meeting.

[17]  A. Hikavyy,et al.  85nm-wide 1.5mA/µm-ION IFQW SiGe-pFET: Raised vs embedded Si0.75Ge0.25 S/D benchmarking and in-depth hole transport study , 2012, 2012 Symposium on VLSI Technology (VLSIT).