An analysis of dimensionality reduction techniques for visualizing evolution

We consider the problem of visualizing the population dynamics along an evolutionary run using a dimensionality reduction technique for mapping individuals from the original search space to a 2-D space. We quantitatively assess four of these techniques in terms of their ability to preserve useful information about (a) population movements and (b) exploration-exploitation trade-off. We propose two compact visualizations aimed at highlighting these two aspects of population dynamics and evaluate them qualitatively. The results are very promising as the proposed framework is indeed able to represent crucial properties of population dynamics in a way that is both highly informative and simple to understand.

[1]  Penousal Machado,et al.  ELICIT: Evolutionary Computation Visualization , 2015, GECCO.

[2]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[3]  Jean-Daniel Fekete,et al.  Visual Analysis of Population Scatterplots , 2011, Artificial Evolution.

[4]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[5]  Lee Spector,et al.  Visualizing Genetic Programming Ancestries , 2016, GECCO.

[6]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[7]  Yong-Hyuk Kim,et al.  Visualizing the search process of particle swarm optimization , 2009, GECCO.

[8]  W. B. Shine,et al.  Visualizing the evolution of genetic algorithm search processes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[9]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[10]  Stephan M. Winkler,et al.  Visualization of genetic lineages and inheritance information in genetic programming , 2013, GECCO.

[11]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[12]  Peter Ross,et al.  GAVEL - a new tool for genetic algorithm visualization , 2001, IEEE Trans. Evol. Comput..

[13]  Achim Rettinger,et al.  Intelligent exploration for genetic algorithms: using self-organizing maps in evolutionary computation , 2008, GECCO '05.

[14]  Anastasia Bezerianos,et al.  Evolutionary visual exploration: experimental analysis of algorithm behaviour , 2013, GECCO.

[15]  Hartmut Pohlheim,et al.  Understanding the Course and State of Evolutionary Optimizations Using Visualization: Ten Years of Industry Experience with Evolutionary Algorithms , 2006, Artificial Life.

[16]  Andreas Kerren,et al.  EAVis: a visualization tool for evolutionary algorithms , 2005, 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05).

[17]  Eric Medvet,et al.  Observing the Population Dynamics in GE by means of the Intrinsic Dimension , 2018, ArXiv.

[18]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[19]  Eric Medvet,et al.  Unveiling evolutionary algorithm representation with DU maps , 2018, Genetic Programming and Evolvable Machines.

[20]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[21]  Christian Jacob,et al.  VISPLORE: a toolkit to explore particle swarms by visual inspection , 2009, GECCO '09.

[22]  Giovanni Squillero,et al.  Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization , 2016, Inf. Sci..

[23]  Trevor Collins,et al.  Applying software visualization technology to support the use of evolutionary algorithms , 2003, J. Vis. Lang. Comput..

[24]  Jan Drchal,et al.  Diversity visualization in evolutionary algorithms , 2007 .

[25]  Krzysztof Michalak Low-Dimensional Euclidean Embedding for Visualization of Search Spaces in Combinatorial Optimization , 2019, IEEE Transactions on Evolutionary Computation.

[26]  Zoltán Tóth,et al.  A Graphical User Interface for Evolutionary Algorithms , 2003, Acta Cybern..

[27]  Hartmut Pohlheim,et al.  Multidimensional Scaling for Evolutionary Algorithms Visualization of the Path through Search Space and Solution Space Using Sammon Mapping , 2006, Artificial Life.

[28]  Alcherio Martinoli,et al.  SwarmViz: An open-source visualization tool for Particle Swarm Optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[29]  Trevor D. Collins,et al.  Visualization of Binary String Convergence by Sammon Mapping , 1996, Evolutionary Programming.

[30]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[31]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[32]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.