Order-configuration functions: Mathematical characterizations and applications to digital signal and image processing

We call a function f in n variables an order-configuration function if for any x1,…, xn such that xi1 ⩽ … ⩽ xin we have f(x1,…, xn) = xt, where t is determined by the n-tuple (i1,…, in) corresponding to that ordering. Equivalently, it is a function built as a minimum of maxima, or a maximum of minima. Well-known examples are the minimum, the maximum, the median, and more generally rank functions, or the composition of rank functions. Such types of functions are often used in nonlinear processing of digital signals or images (for example in the median or separable median filter, min-max filters, rank filters, etc.). In this paper we study the mathematical properties of order-configuration functions and of a wider class of functions that we call order-subconfiguration functions. We give several characterization theorems for them. We show through various examples how our concepts can be used in the design of digital signal filters or image transformations based on order-configuration functions.

[1]  T. Nodes,et al.  Median filters: Some modifications and their properties , 1982 .

[2]  Edward J. Coyle,et al.  Threshold decomposition of multidimensional ranked order operations , 1985 .

[3]  Zvonko G. Vranesic,et al.  Synthesis of Multivalued Multithreshold Functions for CCD Implementation , 1986, IEEE Transactions on Computers.

[4]  G. Neudeck,et al.  VLSI Implementation of a fast rank order filtering algorithm , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  C. L. Mallows,et al.  Some Theory of Nonlinear Smoothers , 1980 .

[6]  GEORG HEYGSTER,et al.  Rank filters in digital image processing , 1982, Comput. Graph. Image Process..

[7]  Azriel Rosenfeld,et al.  A Note on the Use of Local MIN and MAX Operations in Digital Picture Processing , 1977 .

[8]  Vartkes Goetcherian,et al.  From binary to grey tone image processing using fuzzy logic concepts , 1980, Pattern Recognit..

[9]  Petros Maragos,et al.  A unification of linear, median, order-statistics and morphological filters under mathematical morphology , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Michael A. Harrison,et al.  Introduction to switching and automata theory , 1965 .

[11]  Kon Max Wong,et al.  A fast method for real-time median filtering , 1980 .

[12]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[13]  J. Fitch,et al.  Median filtering by threshold decomposition , 1984 .

[14]  Edward J. Coyle,et al.  Stack filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[15]  R. M. Hodgson,et al.  Range filters: Localintensity subrange filters and their properties , 1985, Image Vis. Comput..

[16]  Robert W. Murphy A Positive-Integer Arithmetic for Data Processing , 1957, IBM J. Res. Dev..

[17]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[18]  Georg Heygster Rank filters in digital image processing , 1982, Comput. Graph. Image Process..

[19]  Azriel Rosenfeld,et al.  'Continuous' functions on digital pictures , 1986, Pattern Recognit. Lett..

[20]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[21]  Henry P. Kramer,et al.  Iterations of a non-linear transformation for enhancement of digital images , 1975, Pattern Recognit..

[22]  C. Leach,et al.  Introduction to Statistics: A Non-parametric Approach for the Social Sciences , 1979 .

[23]  F. Hamprecht Introduction to Statistics , 2022 .

[24]  Sankar K. Pal,et al.  On Edge Detection of X-Ray Images Using Fuzzy Sets , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[26]  B I Justusson,et al.  Median Filtering: Statistical Properties , 1981 .

[27]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[28]  Donald G. Bailey,et al.  Properties, implementations and applications of rank filters , 1985, Image Vis. Comput..

[29]  Carolyn R. Johnson Convergence of a Nonlinear Sharpening Transformation for Digital Images , 1985 .

[30]  Patrenahalli M. Narendra,et al.  A Separable Median Filter for Image Noise Smoothing , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Lawrence R. Rabiner,et al.  Applications of a nonlinear smoothing algorithm to speech processing , 1975 .

[32]  S. G. Tyan,et al.  Median Filtering: Deterministic Properties , 1981 .

[33]  D. R. K. Brownrigg,et al.  The weighted median filter , 1984, CACM.

[34]  P. Danielsson Getting the Median Faster , 1981 .