Multivariate Analysis of Orthogonal Range Searching and Graph Distances

We show that the eccentricities, diameter, radius, and Wiener index of an undirected $n$-vertex graph with nonnegative edge lengths can be computed in time $O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2^k k^2 \log n)$, where $k$ is the treewidth of the graph. For every $\epsilon>0$, this bound is $n^{1+\epsilon}\exp O(k)$, which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form $\log^d n$ to $\binom{d+\lceil\log n\rceil}{d}$, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number.

[1]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[2]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[3]  Thore Husfeldt,et al.  Computing Graph Distances Parameterized by Treewidth and Diameter , 2017, IPEC.

[4]  Matthias Bentert,et al.  Parameterized Complexity of Diameter , 2018, Algorithmica.

[5]  Virginia Vassilevska Williams,et al.  Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk) , 2015, IPEC.

[6]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[7]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[8]  Qiaosheng Shi,et al.  Efficient algorithms for network center/covering location optimization problems , 2008 .

[9]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[10]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[11]  Liam Roditty,et al.  Fast approximation algorithms for the diameter and radius of sparse graphs , 2013, STOC '13.

[12]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[13]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2005, WADS.

[14]  Sergio Cabello,et al.  Algorithms for graphs of bounded treewidth via orthogonal range searching , 2009, Comput. Geom..

[15]  Chak-Kuen Wong,et al.  Quintary trees: a file structure for multidimensional datbase sytems , 1980, TODS.

[16]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[17]  Louis Monier,et al.  Combinatorial Solutions of Multidimensional Divide-and-Conquer Recurrences , 1980, J. Algorithms.

[18]  Dan E. Willard,et al.  New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..

[19]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: I. The reporting case , 1990, JACM.